• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実施状況報告書

Parsimonious statistical modelling for high-dimensional problems

研究課題

研究課題/領域番号 19K23193
研究機関大阪大学

研究代表者

POIGNARD BENJAMIN  大阪大学, 経済学研究科, 講師 (40845252)

研究期間 (年度) 2019-08-30 – 2022-03-31
キーワードHigh dimension / M-estimation / Sparsity
研究実績の概要

The research was dedicated to high-dimensional statistics and its applications with a focus on the parsimonious modelling to tackle the so-called curse of dimensionality, to fix over-fitting issues and to gain prediction accuracy for prediction purposes. A significant part of the work was devoted to deriving the theoretical properties of such high-dimensional techniques and to assessing the performances of such modelling through simulated experiments and real data.
One work focused on non-linear feature selection methods. Another work concentrated on factor modelling. One paper focused on sparse techniques for M-estimation with pseudo-observations. Finally one study was devoted to the sparse modelling of high-dimensional variance covariance processes.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

Due to the sanitary situation arising from the spread of coronavirus-19, all face-to-face research conferences, seminars, meetings (both domestic and international) have been cancelled. Thus, a significant part of the budget that was originally dedicated for conference/seminars/research meetings has not been used.
Research progress is going well (3 international publications in 2020, 1 international publication in March 2021) and due to the broad range of open subjects and existing problems in the proposed research "Parsimonious statistical modelling for high-dimensional problems", new research papers are currently under development.

今後の研究の推進方策

Several projects within the area of the proposed research are currently under development.
More precisely, one work is dedicated to non-linear feature selection using Distance Covariance with the treatment of the redundancy using sparsity.
Another study focuses on the development of new association measures for feature selection and their ability to correctly identify the covariates.
Another work completes the publication related to factor modelling. Sparsity is now specified for the factor loading matrix. The key problem is the identifiability issue in factor modelling, since the factor loading matrix enters the variance covariance matrix as a quadratic product. A penalized estimating equation setting is thus considered to derive the theoretical properties. Algorithms are also developed.

次年度使用額が生じた理由

In face of the sanitary situation arising from coronavirus-19, all face-to-face research conferences, seminars, meetings (both domestic and international) have been cancelled. So a large part of the budget has not been used.
If the sanitary situation improves, I plan to make a visiting period for a new research project with Prof Fermanian in France this September 2021 or March 2022.
In addition, a significant part of the research is dedicated to the applications to real-world problems so that computational issues are important matters. Thus, I plan to purchase a multi-core computer.

  • 研究成果

    (9件)

すべて 2021 2020

すべて 雑誌論文 (4件) (うち国際共著 4件、 査読あり 4件、 オープンアクセス 2件) 学会発表 (5件) (うち国際学会 3件、 招待講演 2件)

  • [雑誌論文] The finite sample properties of sparse M-estimators with pseudo-observations2021

    • 著者名/発表者名
      Benjamin POIGNARD; Jean-David FERMANIAN
    • 雑誌名

      Annals of the Institute of Statistical Mathematics

      巻: To appear ページ: To appear

    • DOI

      10.1007/s10463-021-00785-4

    • 査読あり / 国際共著
  • [雑誌論文] High-dimensional penalized ARCH processes2020

    • 著者名/発表者名
      Benjamin POIGNARD; Jean-David FERMANIAN
    • 雑誌名

      Econometric Reviews

      巻: 40 ページ: 86-107

    • DOI

      10.1080/07474938.2020.1761153

    • 査読あり / 国際共著
  • [雑誌論文] Sparse Hilbert-Schmidt Independence Criterion Regression2020

    • 著者名/発表者名
      Benjamin POIGNARD; Makoto Yamada
    • 雑誌名

      Proceedings of Machine Learning Research, AISTATS 2020

      巻: 108 ページ: 538-548

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Statistical analysis of sparse approximate factor models2020

    • 著者名/発表者名
      Benjamin POIGNARD; Yoshikazu Terada
    • 雑誌名

      Electronic Journal of Statistics

      巻: 14 ページ: 3315-3365

    • DOI

      10.1214/20-EJS1745

    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Sparse Hilbert-Schmidt Independence Regression Criterion2021

    • 著者名/発表者名
      Benjamin POIGNARD
    • 学会等名
      Riken AIP - 9th AIP Open Seminar
    • 招待講演
  • [学会発表] Sparse Hilbert-Schmidt Independence Regression Criterion2020

    • 著者名/発表者名
      Benjamin POIGNARD
    • 学会等名
      AISTATS 2020 conference
    • 国際学会
  • [学会発表] Sparse Hilbert-Schmidt Independence Regression Criterion2020

    • 著者名/発表者名
      Benjamin POIGNARD
    • 学会等名
      Seminar presentation at the Institute of Scientific and Industrial Research of Osaka University
    • 招待講演
  • [学会発表] High-dimensional Sparse Multivariate Stochastic Volatility Models2020

    • 著者名/発表者名
      Benjamin POIGNARD
    • 学会等名
      Seminar presentation at the 4th Asian Quantitative Finance Seminar
    • 国際学会
  • [学会発表] High-dimensional Sparse Multivariate Stochastic Volatility Models2020

    • 著者名/発表者名
      Benjamin POIGNARD
    • 学会等名
      CFE-CMStatistics 2020 Conference
    • 国際学会

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi