研究課題/領域番号 |
19K23382
|
研究機関 | 大阪大学 |
研究代表者 |
高岸 茉莉子 大阪大学, 基礎工学研究科, 特任助教(常勤) (00842147)
|
研究期間 (年度) |
2019-08-30 – 2023-03-31
|
キーワード | 係留寸描法 / 順序回帰モデル / リッカート尺度 / 質問紙調査 / 混合モデル |
研究実績の概要 |
心理質問紙調査において,リッカート尺度のような順序カテゴリカルデータによる質問項目は頻繁に用いられるが,そこで回答者により異質な順序カテゴリの閾値を持つ状況(例:質問項目の内容に関係なく極端なカテゴリを選ぶ)は頻繁に見られ,特に国際比較調査でこの問題は顕著である.このような異質性のある閾値を検知し,補正するための方法として係留寸描法がある.この係留寸描法で得られたデータに基づいて補正する既存の統計手法には,順位変換を元にしたアプローチ,順序回帰モデルを係留寸描法用に拡張した,CHOPITと呼ばれるパラメトリックアプローチなどがある.しかし順位変換はモデルへの仮定は少ないがタイデータに対し扱いづらい.一方パラメトリックアプローチであるCHOPITは広く用いられているが,閾値に共変量を使用しており,これだと閾値の観測されない異質性は表現できないと先行研究で指摘されていた.さらにCHOPITは不定性の問題があり,これを回避するにはモデルに対し強い仮定が必要とされ,結果的にモデルとして表現力に欠けることも指摘されていた.これらを受け本研究では,不定性の問題を回避しつつ,CHOPITより柔軟かつ効率的に閾値の異質性を表現できるような順序回帰に基づく係留寸描法の補正法を提案した.具体的には閾値を混合モデルにし,かつ不定性の問題を回避するために閾値にロジット変換を行った.また提案モデルのパラメータは,EMアルゴリズムを用いて効率的に推定することができる.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
3: やや遅れている
理由
申請時から数回の大幅なモデル変更を行なっていることから,進捗は申請時より遅れている.昨年度まで検討していたモデルでは,モデルの柔軟性はあったものの,不定性の問題が完全には解消されていないという問題があった..しかし今回提案しているモデルでは不定性の問題も解消されており,ある程度のモデル柔軟性も担保されている.ただ現段階で既存手法CHOPITとの定量的な比較方法の検討に時間がかかっている.CHOPITは不定性を持つ手法であるため直接的なパラメータの比較ができず,そのため実データから定量的に提案手法のモデル適合度を調べる方法の提案も必要になってくる.現在その方法について検討中である.
|
今後の研究の推進方策 |
現在問題となっているのは,既存手法CHOPITと提案手法との定量的な比較である.Soest et al., (2014)では係留寸描法のための統計手法のデータへの適合度を図るための方法として,Andrew適合ど検定を提案している.そのため本研究での提案手法をAndrew検定でデータへの適合度を調べることを検討する.ただ本提案モデルは混合モデルであるため直接の適用が難しく,それに合わせて検定の手順も調整する必要がある.
|
次年度使用額が生じた理由 |
本研究では申請時からモデルの変更を何度か繰り返しているが,新型コロナの影響により学会などで直接様々な先生方から意見をもらえる機会が減ったのもあり,研究の進行がスムーズにいかなかった.残りの額は対面参加での学会発表と,また論文執筆の際の英文校閲費などに使用したいと考えている.
|