• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実施状況報告書

Tilting theory of gentle algebras via surface combinatorics

研究課題

研究課題/領域番号 19K23401
研究機関名古屋大学

研究代表者

チャン アーロンケイヤム  名古屋大学, 高等研究院(多元), 特任助教 (50845039)

研究期間 (年度) 2019-08-30 – 2022-03-31
キーワードgentle algebra / surface topology / lamination / tilting theory / torsion theory
研究実績の概要

Over last year, I have finished the first article on the topic of this research grant, that is, on the study of torsion classes for gentle algebras and their relation to surface combinatorics. It sets out the foundational work for several forthcoming research projects and results, namely, we established the correspondence between torsion classes of gentle algebras with a certain combinatorial tool called maximal noncrossing sets of strings. This combinatorial tool provides a medium that can be translated to the combinatorics surfaces, namely, (a refinement of) the notion of laminations. Beside its topological significance, our work provides a breakthrough in the classification problem of torsion classes of finite-dimensional. Explicit classification were only known to very cases before and showing only limited phenomenon, and we have now extended to a much larger classes where previously unseen phenomenon occur.

I have also completed another project, in collaboration with several other researchers, on the study of periodicity of trivial extension algebras. This connects trivial extension construction with fractional Calabi-Yau property. This contributes to a new advance in attacking the so-called Periocity Conjecture of self-injective algebras.

現在までの達成度 (区分)
現在までの達成度 (区分)

3: やや遅れている

理由

Impeachment of research environment due to ongoing global pandemic, on top of main collaborator leaving academia.

今後の研究の推進方策

At least one sequel article is in the making. It demonstrates the power of our result in concrete examples, relates several interesting phenomenon on the once-punctured torus with our study, as well as establishes new reduction techniques. Next, we will concentrate on writing up the surface interpretation of the simple-projective duality phenomenon that appears in torsion classes.

次年度使用額が生じた理由

For acquiring reference (books and articles) and equipment, also organisation on joint research project(s).

  • 研究成果

    (3件)

すべて 2021 2020 その他

すべて 国際共同研究 (1件) 雑誌論文 (2件)

  • [国際共同研究] University of Stuttgart(ドイツ)

    • 国名
      ドイツ
    • 外国機関名
      University of Stuttgart
  • [雑誌論文] Irreducible representations of the symmetric groups from slash homologies of p-complexes2021

    • 著者名/発表者名
      Chan Aaron、Wong William
    • 雑誌名

      Algebraic Combinatorics

      巻: 4 ページ: 125~144

    • DOI

      10.5802/alco.153

  • [雑誌論文] On simple-minded systems and τ-periodic modules of self-injective algebras2020

    • 著者名/発表者名
      Chan Aaron、Liu Yuming、Zhang Zhen
    • 雑誌名

      Journal of Algebra

      巻: 560 ページ: 416~441

    • DOI

      10.1016/j.jalgebra.2020.05.024

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi