• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 研究成果報告書

被覆グラフ上のランダムウォークの極限定理に関する多角的研究

研究課題

  • PDF
研究課題/領域番号 19K23410
研究種目

研究活動スタート支援

配分区分基金
審査区分 0201:代数学、幾何学、解析学、応用数学およびその関連分野
研究機関静岡大学 (2021-2022)
立命館大学 (2019-2020)

研究代表者

難波 隆弥  静岡大学, 教育学部, 講師 (20843981)

研究期間 (年度) 2019-08-30 – 2023-03-31
キーワード被覆グラフ / 中心極限定理 / 重複対数の法則 / Edgeworth展開 / ランダムウォーク / 離散幾何解析 / 半群の収束理論 / 多重ゼータ関数
研究成果の概要

被覆グラフ等の無限グラフ上のランダムウォークの極限定理に関して、ランダムウォークの非対称性、極限過程の不連続性、底空間の非可換性の3つに焦点を当てて研究を行った。特に、ベキ零群を被覆変換群とするベキ零被覆グラフ上の非対称ランダムウォークに関して、中心極限定理およびその精密化としてのEdgeworth展開を得ることができ、論文が出版された。またランダムウォークの長時間挙動に関わる問題として、Trotterの半群収束定理の精密化や有限グラフ上の熱核に関する話題、Riemannゼータ分布の畳み込みの長時間挙動に関して研究を行い、それぞれにおいて論文の形として世に出すことができた。

自由記述の分野

確率論

研究成果の学術的意義や社会的意義

前研究課題並びに本研究課題の中で、ベキ零被覆グラフ上のランダムウォークの極限定理に関して、中心極限定理や大偏差原理、重複大数の法則などの一連の基本的な結果を示すことができた。これらにより、ベキ零の非可換性をもつ設定における極限定理はよく理解されたと言ってよい状況にまで進展した。さらにTrotterの半群収束定理の改良を行ったことにより、半群の収束が現れる様々な局面で新しい数学の発展が見込めるという点で十分意義のある研究ができたと自負している。

URL: 

公開日: 2024-01-30  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi