• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実績報告書

Toward a Multi-Gait Analysis/Recognition System

研究課題

研究課題/領域番号 19K24364
研究機関大阪大学

研究代表者

ALLAM SHEHATA・ALLAM  大阪大学, 産業科学研究所, 特任研究員(常勤) (70850767)

研究期間 (年度) 2019-08-30 – 2021-03-31
キーワードMulti-Gait Modeling / Gait Energy Image / Feature Representation / Dense Trajectories / Fisher vector encoding
研究実績の概要

This ultimate goal of this project is to build multi-gait recognition system. Due to the lack of mutli-gait dataset, I spent the most part of this project period working on dataset preparation and developing a robust gait feature representation. I mainly depended on the available video recordings in my lab for group walking and human behavior analysis in the wild. I compiled my dataset from these recordings as follow;1-I prepared 182 video for the walking subjects while they are walking individually (single gait dataset).
2-I compiled a group walking video for the same walking subjects while they are walking together freely in outdoor environment (multi-gait dataset). Around 80 subject out of 182 appeared in this multi-gait dataset.3-For the single gait dataset, I have extracted the binary silhouette sequences and Spatial-pyramid Optical flow. I have used the recent deep learning models for both silhouette and optical flow extraction. 4-For multi-gait dataset, I applied the recent deep learning model (FairMOT) of multi object tracking the extract the Boundingbox sequences for each subject within the group. Afterward, I extracted the binary silhouette and optical flow information for each bounding box sequence.
5-I used the dense trajectory combined with the masked optical flow to build feature descriptor for each trajectory. As well, I aggregated the relative position for each trajectory regrading the wlking subject bounding box. 6. I used the fisher vector encoding to build the global descriptor for both single and multi gait features. Compute pairwise similarity.

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi