研究課題/領域番号 |
20340099
|
研究機関 | 名古屋大学 |
研究代表者 |
金田 行雄 名古屋大学, 工学研究科, 教授 (10107691)
|
研究分担者 |
石井 克哉 名古屋大学, 情報基盤センター, 教授 (60134441)
石原 卓 名古屋大学, 工学研究科, 准教授 (10262495)
芳松 克則 名古屋大学, 工学研究科, 助教 (70377802)
|
キーワード | 乱流 / 高いレイノルズ数 / 直接数値シミュレーション / データ解析 / 統計的普遍性 / 平行2平板間乱流 / Wavelet / Coherent Vortex Simulation |
研究概要 |
本研究の目的は計算科学的方法によって高いレイノルズ数の乱流の持つ統計的普遍性の定量的検証を行なうことである。平成22年度の主な成果は以下のとおりである。 (A) 一様等方性乱流の大規模直接数値シミュレーション(DNS)のデータ解析によって、ナビエ・ストークス方程式における慣性項の粘性項に対する比が乱流場の各点で一般にレイノルズ数より遥かに小さいこと、および渦度の強い領域でランダムな場に比べその比が小さいことが分かった。また渦度が急激に変化する領域近傍では大きな渦から小さな渦への直接的エネルギー輸送が存在し、その輸送が慣性小領域における乱流場の間欠性、大偏差統計、相似則などに大きな影響をもたらし得ることが分かった。このことは乱流の小さなスケールにおける統計的普遍性についての従来のモデルの再考を迫るものである。 (B) 前年度構築した平行平板間乱流DNSのデータベースについて、今年度はとくに対数則領域における慣性小領域の速度相関スペクトルの局所的非等方性に着目したデータ解析を行い、その非等方性が壁からの距離およびレイノルズ数の増加とともに減少することを定量的に示した。また、得られた結果が一様勇断乱流における非等方スペクトルの理論と整合することを示した。 (C) 乱流の持つ巨大自由度の縮約手法の一つである秩序渦度シミュレーション(CVS)手法を検証した。 特に、秩序渦度の圧縮部分の平均自乗量は、秩序渦の持つ(各点における)渦度の自乗の総和に比べ十分に小さいことが分かった。また、適合格子を用いたCVSの計算量を見積もり、あるレイノルズ数の等方な乱流に対しては、適合格子CVSの理想的な計算コストはDNSの10%程度であることが分かった。
|