スピン自由度を持つ開放型量子ドットとしてアンダーソン模型を考え、相互作用の効果を含んだ多電子散乱状態の厳密解を得ました。これを用いて、量子ドットを通じてのエンタングルメント生成確率を膨密に計算しました。 アンダーソン模型は開放型量子ドットを記述する模型としては最も標準的なものです。前年度の研究対象であった相互作用共鳴準位模型のスピン自由度がある場合への拡張とも考えられます。この系において、自由2電子平面波を入射状態とする2電子散乱状態の厳密解を得ました。特に、スピン上向き、下向きの2電子平面波を入射した場合は、量子ドット上でのクーロン相互作用により、2電子平面波の一部が2電子束縛状態として散乱されます。この意味で、本研究で得られた厳密解は従来のベーテ仮説法では構成できない新しい多電子散乱状態です。 このような多電子散乱状態は、バイアス電圧下での量子ドットの解析において、重要な役割を果たします。本研究では、この2電子散乱状態の厳密解を用いて、エンタングルしていない2電子が、量子ドットでの散乱を通じてエンタングルメントを生成する確率を計算しました。結果として、2電子の各運動量が保存しない散乱過程(コトンネリング過程)では、スピン一重項状態のみが量子ドットを透過できることが分かりました。 尚、「開放型量子ドット系における多電子散乱状態の厳密解」の研究に対して、日本物理学会 第651回年次大会にて第4回日本物理学会若手奨励賞を受賞しました。
|