研究概要 |
本研究は,国産の数値手法である「離散変分法」を有限要素法に拡張することを目的としていたが,その中で以下の知見を得た. まず,本研究において空間1次元の場合にH^1の枠組みで有限要素法版離散変分法が構成可能であること,およびいくつかの代表的な偏微分方程式(非局所作用素を含む方程式を含む)に対して適用し,実際に保存則を保つ数値計算が可能であることを示した.またこの枠組みが空間2,3次元の場合にも基本的に拡張可能であることを示した,特に2次元磁場無しのGinzburg-Landau方程式(超伝導現象を記述する方程式)の場合に,実際にスキームが動作することを確認した.また計算の高速化のため,新たに線形化する手法も開発し,その有効性を確認した.
|