研究概要 |
非線形渦電流場を含む有限要素法・境界要素法などの「場の解析]に基づく3次元電磁界解析プログラムにおいて、境界積分方程式(境界要素法)の計算に高速多重極法を適用することによって, 超伝導ケーブル導体の電磁界解析プログラムの開発を行った。具体的には、 (1) 超伝導特性を考慮した3次元電磁界解析(有限要素-境界要素併用法)の定式を行った。 (2) 集合導体を解析する場合、強制電流を与えて解く電流入力法では、集合導体の各線材に流れる電流値を予め求める必要があるが、導電率の非線形性を考慮した解析では導体断面内の導電率が不均-になるため各線材に流れる電流値を求めるのが難しく、偏流解析には適さない。そこで、導体内の導電率が不均一なモデルでも偏流解析を行うことが可能な、電圧入力法を3次元電磁界解析に組み込んだ。 (3) 高速多重極法を実装する上での大きな問題は、定式化、特に球面調和関数のシフトや多重極展開から局所展開への変換が複雑であり、プログラムの開発や高速化が難しいことである。高速多重極法を実装する手法としては多重極展開に関して、(a) 漸化式を用いる方法、(b) Andersonの方法、(c) Makinoの方法(擬似粒子法)の三つが知られているが、本研究では、実装が容易な体球調和関数の潮化式を用いる方法を採用した。 以上より、実機解析に不可欠な高精度計算法を開発し、数値電磁界計算法の高精度・高速・大容量化・高安定化を図った。
|