研究課題
非整数階偏微分方程式は、異常拡散現象などのモデルとして認識されており、理論面だけではなく応用の観点からもその数学解析が求められている。本研究は、単独方程式から連立方程式まで多数のモデル式に対して、順問題及び逆問題の基礎理論を構築し発展した。特に、これまでの議論をまとめて次の成果を得た。(1)医学イメージングに応用がある非整数階波動方程式を考察した。まず、係数の時空間依存性を許す、最も一般的な方程式に対して解の妥当性を論じた。これにより、非線形方程式を含む幅広い問題設定に対応することが期待される。また、特殊な場合に対し解の時間漸近挙動を調べ、得られた評価式を利用し、空間一点の観測データを用いてソース項決定逆問題の一意性及び安定性を証明した。(2)単独方程式の拡張となる混合型非整数階微分方程式を考察した。一階の微分を含める非整数階拡散方程式について、解の滑らかさ及び長時間漸近挙動を論じた。単独方程式に比べ時間原点付近においてより良い滑らかさを持つ一方で、通常の拡散方程式と比較して時間に対し指数型減衰ではなく、階数に関わる多項式型の時間減衰になる。これは、場合によって、混合型非整数階拡散方程式はより良いモデルであることを示唆する。また、同様な発想で混合型非整数階波動方程式について、解の滑らかさ及び境界における観測データによる、初期値或いはソース項決定逆問題の安定性を確立した。(3)二種類以上の物質が絡み合う現象を記述する連立非整数階拡散方程式を考察した。この場合、解の時間減衰は一番小さい非整数階数だけに依存することを解明し、成分の相互作用によって全ての成分の減衰が一番遅いほうに統合されることを示した。なお、拡散系の長期時間発展の予測に役立つ階数決定の逆問題に対し、一成分だけの観測データによる一意性を証明した。更に、数値解析で前述の遅い減衰が検証され、全ての階数の再構築が行われた。
令和4年度が最終年度であるため、記入しない。
すべて 2023 2022 その他
すべて 国際共同研究 (2件) 雑誌論文 (3件) (うち国際共著 1件、 査読あり 3件、 オープンアクセス 1件) 学会発表 (3件) (うち国際学会 2件、 招待講演 3件)
Fractional Calculus and Applied Analysis
巻: 26 ページ: 533~566
10.1007/s13540-023-00149-0
Mathematical Control and Related Fields
巻: 13 ページ: 470~499
10.3934/mcrf.2022005
Practical Inverse Problems and Their Prospects, Mathematics for Industry
巻: 37 ページ: -