• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実績報告書

ODE 型解の高次漸近展開とそれに付随する逆問題

研究課題

研究課題/領域番号 20F20327
研究機関東京大学

研究代表者

石毛 和弘  東京大学, 大学院数理科学研究科, 教授 (90272020)

研究分担者 EOM JUNYONG  東京大学, 数理(科)学研究科(研究院), 外国人特別研究員
研究期間 (年度) 2020-11-13 – 2023-03-31
キーワード非線形放物型方程式 / ODE 型解 / 漸近展開
研究実績の概要

様々な非線形放物型方程式において, 対応する常微分方程式系の解の様に振る舞う解(ODE 型解)の時間大域挙動を調べた. 特に, (1) 同じ拡散係数をもつ弱連立非線形放物型方程式系における ODE 型解 (2) 多孔質媒体方程式におけるODE 型解の漸近挙動について研究を行った.
(1) 同じ拡散係数をもつ弱連立非線形放物型方程式系における ODE 型解:ODE 解の挙動によって誘発されるある変換によって導かれる方程式系はある弱連立特有の特別な構造を持ち, その構造とスカラー方程式の解の高次漸近展開理論を用いて ODE 型解の漸近挙動はある熱方程式の解を用いて表現できることを示した. 結果として同じ拡散係数をもつ弱連立非線形放物型方程式系の ODE 型解は単独方程式とは異なるシステム特有の漸近挙動をもつことが明らかになった.
(2) 多孔質媒体方程式における ODE 型解:多孔質媒体方程式における解の漸近展開は Barenblatt 解と呼ばれる自己相似解を用いて記述されるのがほとんどであり, さらに, 第一漸近形を求めるところで漸近解析を終えることが大半である. 本研究では, ODE型解の特徴を用いて非線形拡散項を時間のみに依存する拡散係数を持つ線形拡散項によって近似し高次漸近解析を行った.これにより, 既存の研究結果とは全く異なる描像を持つ高次漸近挙動が得られ, それらの主要項がある特殊な時間スケールを持つ熱方程式の解として表現されることが明らかになった.
(1), (2) 共に, 3次のオーダーまでの漸近展開を行っており, これらの理論は, 必要に応じて, 時間大域的に解の凹凸まで調べることが可能となっている.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

研究計画に沿って, 半線形放物型方程式に限っての ODE 型解の高次漸近解析をシステム及び準線形放物型方程式に発展させ, ODE 型解の高次漸近展開を得ることに成功したため, 本研究は順調に進展している.

今後の研究の推進方策

研究計画に沿って, 非線形高階放物型方程式や連立非線形放物型方程式系の ODE 解の漸近挙動解析を中心に研究を推進していく。

  • 研究成果

    (3件)

すべて 2020 その他

すべて 雑誌論文 (2件) (うち国際共著 2件、 査読あり 2件) 備考 (1件)

  • [雑誌論文] Large time behavior of ODE type solutions to a nonlinear parabolic system2020

    • 著者名/発表者名
      J. Eom and K. Ishige
    • 雑誌名

      Nonlinear Anal.

      巻: 191 ページ: 111631

    • DOI

      10.1016/j.na.2019.111631

    • 査読あり / 国際共著
  • [雑誌論文] Large time behavior of ODE type solutions to nonlinear diffusion equations2020

    • 著者名/発表者名
      J. Eom and K. Ishige
    • 雑誌名

      Discrete Contin. Dyn. Syst.

      巻: 40 ページ: 3395-3409

    • DOI

      10.3934/dcds.2019229

    • 査読あり / 国際共著
  • [備考]

    • URL

      https://www.ms.u-tokyo.ac.jp/teacher/ishige.html

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi