• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実績報告書

病理検査を対象とした自動切り出しロボットの開発

研究課題

研究課題/領域番号 20H00227
研究機関帝京大学

研究代表者

光石 衛  帝京大学, 先端総合研究機構, 教授 (90183110)

研究分担者 山下 樹里  国立研究開発法人産業技術総合研究所, 生命工学領域, 主任研究員 (10358252)
小関 義彦  国立研究開発法人産業技術総合研究所, 生命工学領域, 主任研究員 (30356993)
鎮西 清行  国立研究開発法人産業技術総合研究所, 生命工学領域, 副研究部門長 (60357506)
牛久 哲男  東京大学, 大学院医学系研究科(医学部), 教授 (60376415)
MarquesMarinho Murilo  東京大学, 大学院工学系研究科(工学部), 助教 (70837468)
研究期間 (年度) 2020-04-01 – 2025-03-31
キーワードロボット / 遠隔操作 / AI / 病理 / 切断
研究実績の概要

病変部分の切り出し線決定の自動的に関する研究を昨年度に引き続き行った。まず、病変部分のセグメンテーションの自動化を試みた。病理検体の切除線を判定する前段階として、病変部位である腫瘍領域を推定するAIのプロトタイプを開発してきた。これまでに入手した1,694件のうち腫瘍部位の記載がある1,042セットを用いて腫瘍領域を推定するAIを開発した。その結果、F値(正確さの指標)0.666を得た。300セットを用いた以前のAIのF値0.658に対して改善が見られたが限定的であった。詳細に内訳をみると、ヒトが見て判り易い型では改善が見られたが、判り難い型では改善が見られないことがわかった。また、病変部分のセグメンテーションについて、推定精度の向上と解析を進めるため、腫瘍の肉眼型や治療歴、大腸の部位等に関するデータセットを収集した。
さらに、これまで、シミュレーションにより切削力が小さくなるような切り方とはどのようなものかを解析してきたが、切削力と切断面性状との関係は必ずしも明確ではなかった。そこで、さらに良い切除方法を探るため、医師の検体切り出し作業を撮影し、医師の動作解析を行なった。切断動作の動画クリップ全4,234件のうち,フレームアウトするなどナイフの動きを追尾できなかった場合を除く1,560件について,切断箇所・使用されたナイフの種類等により分類し、分析を進めた。なお、データセットには病理切除の経験年数の情報も含めた。
ロボット制御に関しては、遠隔操作で病理切除を可能とする際に必ず必要になる左右のアームの衝突回避機能についてベクトル場における不等式を用いる方法の研究を進めた。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

昨年度に引き続き、更なる病理画像の収集と、医師による切除動作画像の取集を進めた。収集した病理画像と開発した検出AIによりある程度の精度で病変部位を検出可能となった。また、より良い切除方法を見出すため、医師の動作解析が可能な画像を収集し、解析を進めている。さらに、遠隔病理切り出しを行うためにロボットの制御方法についても研究を進めている。これらからして、おおむね順調に研究が進展している。

今後の研究の推進方策

引き続き、病理画像の更なる収集と、AIを用いてそれらの画像に対するアノテーションを行う。また,開発した画像処理手法を用いて、切り出し作業の対象となる部位のセグメンテーション精度を向上する.また、医師の切り出し作業の収集と動作解析を引き続き行う。医師の動作解析と切除シミュレータにより最適な切除方法の解明を行い、ロボットによる自動病理切り出しシステムの構築につなげていく。

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi