研究課題/領域番号 |
20H00314
|
研究機関 | 国立研究開発法人産業技術総合研究所 |
研究代表者 |
伊藤 満 国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 招聘研究員 (30151541)
|
研究分担者 |
高島 浩 国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 上級主任研究員 (10357353)
森分 博紀 一般財団法人ファインセラミックスセンター, その他部局等, 主席研究員 (40450853)
佐藤 幸生 九州大学, 工学研究院, 准教授 (80581991)
|
研究期間 (年度) |
2020-04-01 – 2023-03-31
|
キーワード | 2次元化合物強誘電体 / 分極反転機構 / 単結晶薄膜 |
研究実績の概要 |
本研究では、4つのグループ(研究者)が連携して以下に述べる研究を推進している。伊藤・高島のグループでは、伊藤が強誘電体設計に関する経験を活かし、物質合成をおこなうとともに、高島と共同で単結晶酸化物・窒化物薄膜の合成を試みた。伊藤がこれまで展開してきているウルツァイト型、κアルミナ型化合物の単結晶薄膜の強誘電性を実験的・計算科学的(森分担当)に詳らかにし、2つの一軸性強誘電体グループにおいて外部電場で分極反転を可能にする分極反転のメカニズムを元素置換の効果と絡めながら、詳細を議論している。高島は、気相成長により、母体となるAlN、GaNのマトリックスおよびScドープ材料の原子平坦性に優れた高品質単結晶薄膜の実現を図り、結晶性、表面平坦性、断面構造の詳細を探索し、高品質薄膜が得られていることを明らかにした。また、佐藤は伊藤・高島が 作製した薄膜の平面・断面STEM観察により、ドメイン境界・ドメイン壁内の原子配列と変位を詳細に観察し、分極がドメイン壁内で過剰イオン、欠損イオン等の格子欠陥と如何に結合しながら回転する実像で捉える糸口を掴んだ。ドイツキール大学のFichtnerとWagnerは主に薄膜デバイス応 用に向けたより平坦な(Al,Sc)N系の膜作りと、Sc以外の2元素以上の複合元素置換によるAlNの強誘電体化の可能性についてキール大学の計算グ ループおよび森分と議論を進めている。森分はさらに代表的ウルツァイト型化合物 (AlN、GaN、InN、AlP、LiSiNO等)の分極反転エネルギーを計算 し、2種類の金属イオンが複合化して秩序配列する場合と無秩序な場合のエネルギー的安定性と分極反転エネルギーの差を計算で詳細に求め、 金属イオンの複合化と置換効果を定量的に説明して物質探索の指針を得ることに成功した。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
高島と伊藤は、気相成長により、母体となるAlN、GaNのマトリックスおよびScドープ材料の原子平坦性に優れた高品質単結晶薄膜の実現を図り、結晶性、表面平坦性、断面構造の詳細を探索し、高品質薄膜が得られていることを明らかにした。また、佐藤は伊藤・高島が 作製した薄膜の平面・断面STEM観察により、ドメイン境界・ドメイン壁内の原子配列と変位を詳細に観察し、分極がドメイン壁内で過剰イオン 、欠損イオン等の格子欠陥と如何に結合しながら回転する実像で捉える糸口を掴んだ。さらに、Sc以外の2元素以上の複合元素置換によるAlNの強誘電体化の可能性についてキール大学の計算グループおよび森分と議論を進めている。森分はさらに代表的ウルツァイト型化合物 (AlN、GaN、InN、AlP、LiSiNO等)の分極反転エネルギーを計算 し、2種類の金属イオンが複合化して秩序配列する場合と無秩序な場合のエネルギー的安定性と分極反転エネルギーの差を計算で詳細に求め、 金属イオンの複合化と置換効果を定量的に説明して物質探索の指針を得ることに成功した。さらに巨大分極を示す候補材料を挙げ新材料の薄膜化に挑戦している。
|
今後の研究の推進方策 |
昨年度に引き続き、構造が単純な一軸性強誘電体の分極反転機構を解析して新規変位型強誘電体探索のための戦略を立てることを主目的とする。高島と伊藤は、気相成長により、母体となるAlN、GaNのマトリックスおよびScドープ材料の原子平坦性に優れた高品質単結晶薄膜の実現を図り高品質薄膜の誘電特性評価を行いサイエンスを深化する。さらに新規材料の候補を挙げ新材料の薄膜化に挑戦する。また、佐藤は引く続き伊藤・高島が 作製した薄膜の平面・断面STEM観察により、ドメイン境界・ドメイン壁内の原子配列と変位を詳細に観察する。さらに、Sc以外の2元素以上の複合元素置換によるAlNの強誘電体化の可能性についてキール大学の計算グループおよび森分と議論を進める。森分はさらに代表的ウルツァイト型化合物 (AlN、GaN、InN、AlP、LiSiNO等)の分極反転エネルギーを計算 し、2種類の金属イオンが複合化して秩序配列する場合と無秩序な場合のエネルギー的安定性と分極反転エネルギーの差を計算で詳細に求め、 金属イオンの複合化と置換効果を定量的に説明して物質探索の指針を得る。これらの遂行により、構造に内在する本質的な結晶の極性発現の原因を探り、同時に、分極反転をもたらす原因をエネルギー的観点から詳らかにする。
|