研究課題/領域番号 |
20H00357
|
研究機関 | 日本大学 |
研究代表者 |
石澤 淳 日本大学, 生産工学部, 教授 (30393797)
|
研究分担者 |
高 磊 国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 主任研究員 (40650429)
徐 学俊 日本電信電話株式会社NTT物性科学基礎研究所, フロンティア機能物性研究部, 主任研究員 (80593334)
Cong Guangwei 国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 主任研究員 (20470049)
山田 浩治 国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 総括研究主幹 (50574927)
西川 正 東京電機大学, 工学部, 教授 (20374069)
山本 宗継 国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 研究主幹 (00358285)
赤塚 友哉 日本電信電話株式会社NTT物性科学基礎研究所, 量子科学イノベーション研究部, 主任研究員 (90548257)
今井 弘光 日本電信電話株式会社NTT物性科学基礎研究所, 量子科学イノベーション研究部, 主任研究員 (00649551)
|
研究期間 (年度) |
2020-04-01 – 2024-03-31
|
キーワード | 光周波数コム / 電気光学変調 / スーパーコンティニューム光発生 / シリコンフォトニクス |
研究実績の概要 |
本研究の目的は,超高速光技術とシリコンフォトニクス技術を融合させることで電気光学変調コムをオンチップ集積し,超高精度にマイクロ波と光波を直接変化することができる周波数変換ギアとして光周波数からマイクロ波あるいはその逆方向に,高度に制御することにより,従来の光シンセサイザーの枠組みを超えて光を起点として任意の周波数の電磁波(サブPHzからkHz迄)が発生な可能な“光RFシンセサイザー”を開拓することである.令和4年度はシリコン変調器を用いて,繰り返し周波数が6-25 GHzまで周波数可変可能なEOコムの発生に成功した.Si変調器へのマイクロ波信号強度の最適化,光結合の光学系見直し等を行い,高効率なEOコム発生を実現した.光コムスペクトル帯域としては125 GHzまで帯域拡張した.しかし,光コムのスペクトル帯域幅は短パルス化して非線形効果を起こすには不十分であったため,令和5年度は光コムの帯域幅拡大の実現を目指す.また,Er添加した単結晶酸化希土類(Rare-Earth Oxide, REO)薄膜導波路中光ポンピングによる信号増強のEr濃度依存性を調べた.その結果,Erイオン同士のエネルギー移動によるポピュレーション損失が光利得の制約メカニズムということが明らかにした.また,レーザーを実現するため高Q値なマイクロリング共振器も実現した.更に,EOコムを用いた低雑音なマイクロ波発生には制御回路のフィードバック帯域の拡大が必要であることも見出し,光路長の短尺化を行った.広帯域光発生用の繰り返し周波数を低減する光ゲート(パルスピッカー)や高非線形ファイバを使用せず,波長分散制御を行うことで,全光ファイバーベース電気変調コムを用いた世界最短光パルス列となる25 GHz繰返しサブ24フェムト秒光パルス列発生に成功した.更に,この短パルス光をSiN細線導波路へ光結合することで2/3オクターブ帯域以上の広帯域光発生を実証した.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
3: やや遅れている
理由
本年度はまだコロナウィルス感染対策が実施されており,研究活動に制限があったことや半導体などの材料不足で物品購入までの多くの日数を要したため,研究計画が予定通り進まなかった.しかし,次年度は,ほぼコロナウィルス感染症拡大前の研究活動ができるため,研究を加速できる.
|
今後の研究の推進方策 |
次年度は,シリコン変調器を多段化し,光コムの広帯域化を目指して電気光学変調コム発生用のシリコン変調器を確立させる.更に,新たな非線形導波路を用いた高効率な広帯域発生にも挑戦する.
|