研究課題
奨励研究
機械学習を用いて、術中VEP モニタリングを実施した脳手術施行症例での術後視機能障害予測モデルを構築した。オーバーサンプリング法や特徴量選択といった前処理を行うことで、予測精度の向上が認められた。本研究では、ランダムフォレストやロジスティック回帰などのアルゴリズムが予測精度が高いという結果であった。さらに決定木分析により、VEPモニタリングにおいて、VEP波形の振幅だけでなく、その再現性も術後視機能を予測するうえで、重要な要素であることが示唆された。
臨床検査学
これまで、術中VEPモニタリングはその統一された評価指標がなく、モニタリング結果と術後視機能との明確な関連は明らかとなっていない。本研究では、機械学習を用いてVEPモニタリングデータから術後視機能の予測を試みた。その結果、使用するアルゴリズムや前処理の方法により精度の差がみられ、それらを組み合わせることで高精度モデルの作成が可能であった。さらに、決定木分析により、術後視機能に関連するVEPモニタリング指標が示された。