測度距離空間およびその拡張概念であるピラミッドに関して,以下の3つの研究を行った. 1つ目の研究では,東北大学の横田氏と共同で,昨年度に引き続き,測度距離空間族における位相的有界性と順序的有界性の同値性について調査を行った.この同値性に関する昨年度中に得られた結果がある意味で局所的にも成り立つだろうと予想し,その証明を目標として更なる研究を行った.元の結果を局所的にするという発想は斬新で,実際に証明ができれば本研究が従来とはまた異なる意義を持つことになる.証明はほとんどできており,論文を準備中である. 2つ目の研究では,東北大学の塩谷氏・中島氏と共同で,測度距離空間全体の上に定まるボックス位相・集中位相およびピラミッド全体の上に定まる弱位相について,これら3つの空間の位相的性質を調査した.従来,位相的性質はコンパクト性,可分性,(適切な距離関数の)完備性の有無が知られていたが,本研究では局所コンパクト性,σコンパクト性,Baire性,(大域)可縮性,局所連結性などの有無を明らかにすることに成功した.現在,その他の性質も調査中である. 3つ目の研究では,福岡大学の三石氏・江崎氏と共同で,2つのピラミッドがいつ異なると言えるかという問題に対して不変量を用いたアプローチを行った.実際に我々はピラミッドの重要な具体例である無限次元ガウス空間と無限次元立方体が互いに相似でないことを不変量を用いて証明した.また我々は集中現象の逆現象である消散現象の観点から“部分消散”という概念を新たに与え,それに対応するピラミッドを構成し,それらが互いに異なることを証明した.これにより測度距離空間に対応しないピラミッド全体の次元が無限次元であることが得られた.本研究に関する論文も現在執筆中である.
|