合金の固液界面エネルギーの異方性は凝固組織の形態を決定する重要な因子である.fcc合金は二つの異方性パラメータによって固液界面エネルギーの異方性が記述される.しかし,多くの合金系においてその異方性パラメータの値は不明であり,実験,計算による推定も困難なのが現状である.本研究では,逆解析的なアプローチとしてシミュレーションで得られた多様な組織形態から,逆に異方性パラメータを推定することを試みた.また,凝固組織の3次元形態を扱うのは難しいため,形態の特徴のみを抽出し2次元で表すことができる interfacial shape distribution (ISD) マップに着目した. 本研究では,フェーズフィールド・シミュレーションを用いて,多様な異方性パラメータのセットにおけるfcc二元系合金の等温凝固シミュレーションを行なった.それから得られたISDマップを学習データとし,convolutional neural network (CNN)を用いて学習させ,異方性パラメータとISDマップを関係づけた.学習によって得られた関係を用いて,任意のISDマップから,逆にその異方性パラメータを推定することを試みた. 異方性パラメータの数によって4900から40000枚のISDマップを用いてCNNによる学習を行なった.また,学習データと異なる異方性パラメータのセットから得られた10000枚のISDマップを用いて,学習させたCNNモデルでその異方性パラメータの推定を行なった.その結果,学習データ数が多くなるほど推定精度が高くなることが分かり,40000枚のISDマップで学習させた場合は,二つの異方性パラメータを5%以下の高精度で推定することができた.今後,このアプローチを用いて,X線トモグラフィーなどで得られた凝固組織のISDマップから実合金の異方性パラメータの推定が期待できる.
|