研究課題
本年度は,まず昨年度発見した量子Yang-Baxter moveに関する論文を執筆した.この論文をプレプリントサーバーのarXivで公開した.また,研究集会「2021年度表現論シンポジウム」および「Conference on Algebraic Representation Theory 2021」にて,本研究の内容を講演した.続いて,C型の半無限旗多様体のトーラス同変K群において,指標のウェイトがminusculeウェイトである場合の逆Chevalley公式の記述の研究を行った.その結果,逆Chevalley公式の量子alcoveモデルを用いた明示的な記述を得た.この結果は,展開公式の有限性を含む.すなわち,展開公式における和が有限和であることと,展開係数が(Laurent)多項式であることを示している.一方で,この展開公式は一般に打ち消し合う項を含んでいる.これについて,特にウェイトがウェイト格子の基本ベクトルであるときは,この打ち消しを明示的に記述し,cancellation-freeな展開公式を得た.これらの結果については,現在論文を執筆中である.また,ウェイトが基本ベクトルの(-1)倍のときの打ち消しの研究については,現在進行中である.その他,関連する研究として,一般旗多様体の量子K群におけるChevalley公式の記述を研究した.一般旗多様体の量子K群におけるChevalley公式は,原理的には旗多様体のChevalley公式から直接得ることができるが,この展開公式は打ち消し合う項を含む.本研究では,とくに一般旗多様体がA型の2ステップ旗多様体の場合に,この打ち消しを研究した.その結果,所望のcancellation-freeなChevalley公式を記述することができた.この結果について,論文にまとめ,arXiv上で公開した.
令和3年度が最終年度であるため、記入しない。
すべて 2021 その他
すべて 国際共同研究 (1件) 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件、 オープンアクセス 1件) 学会発表 (2件) (うち国際学会 1件、 招待講演 1件)
Forum of Mathematics, Sigma
巻: 9 ページ: -
10.1017/fms.2021.45