• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実績報告書

認知診断評価に基づいた個性化した質問と回答の生成によるAI適応型学習システム

研究課題

研究課題/領域番号 20J15339
研究機関国立研究開発法人情報通信研究機構

研究代表者

GAN Wenbin  国立研究開発法人情報通信研究機構, ユニバーサルコミュニケーション研究所統合ビッグデータ研究センター, 研究員

研究期間 (年度) 2020-04-24 – 2022-03-31
キーワードKnowledge Tracing / Cognitive Diagnosis / Intelligent Tutoring / Performance Modeling / Item Response Theory / Learner Assessment / AI in Education / Education Data Mining
研究実績の概要

This year I continue the work on learner's knowledge assessment (LKA). I have further explored the research of fine-grained assessment and interpretability. Improved on my previous work [BESC’20], I propose a novel model that can not only output the learners’ fine-grained knowledge states but also the item characteristics, enabling the interpretability. Extensive model analyses conducted from six perspectives on five real-world datasets validate its superiority. This work has been published in a top journal [Neurocomputing].

Another work solves the fundamental issues of data sparseness and information loss while improving the model performance. It has explored to incorporate the knowledge structure (KS) into the LKA to potentially resolve the above issues. This work automatically generates the KS from the learning logs and proposes a novel graph model with the attention mechanism. Extensive experiments show the effectiveness. This work has been published in a top journal [IJIS].

The above work stimulates a new idea of multimodal learning analysis. I have published a review paper about the empirical evidence on the usage of multimodal analysis to provide insights for smarter education. I also participated in a work published in [ICCE’21], in which a graph-based method is proposed for LKA.
I also finished my doctoral thesis, in which I summarize my PhD works. Overall, it proposes a general framework for dynamic LKA by integrating both learner and domain modeling. Based on this framework, it proposes three approaches, each addressing one specific issue in existing studies.

現在までの達成度 (段落)

令和3年度が最終年度であるため、記入しない。

今後の研究の推進方策

令和3年度が最終年度であるため、記入しない。

  • 研究成果

    (3件)

すべて 2022 2021

すべて 雑誌論文 (2件) (うち査読あり 2件) 学会発表 (1件) (うち国際学会 1件)

  • [雑誌論文] Knowledge interaction enhanced sequential modeling for interpretable learner knowledge diagnosis in intelligent tutoring systems2022

    • 著者名/発表者名
      Gan Wenbin、Sun Yuan、Sun Yi
    • 雑誌名

      Neurocomputing

      巻: 488 ページ: 36~53

    • DOI

      10.1016/j.neucom.2022.02.080

    • 査読あり
  • [雑誌論文] Knowledge structure enhanced graph representation learning model for attentive knowledge tracing2022

    • 著者名/発表者名
      Wenbin Gan,Yuan Sun,Yi Sun
    • 雑誌名

      International Journal of Intelligent Systems

      巻: 37 ページ: 2012~2045

    • DOI

      10.1002/int.22763

    • 査読あり
  • [学会発表] Improving Knowledge Tracing through Embedding based on Metapath2021

    • 著者名/発表者名
      Wenbin GAN, Chong Jiang
    • 学会等名
      The 29th International Conference on Computers in Education (ICCE 2021)
    • 国際学会

URL: 

公開日: 2022-12-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi