代数ファイバー空間の地誌学的研究の観点から、巡回被覆構造に関する仮定をした3次元代数ファイバー空間の研究を行った。具体的には、被覆次数がスロープと呼ばれる相対数値不変量に与える影響を研究していた。目標を達成する上で、次の大きな2つのステップがあった。1つ目は、相対標準因子の自己交点数を、被覆次数及び、ホッジ束のHarder-Narasimhanフィルトレーション由来の諸指数からなる式により評価すること。2つ目は、相対標準因子の自己交点数を、ホッジ束のHarder-Narasimhanフィルトレーション由来の諸指数のみからなる式により評価すること。 1つ目のステップは、昨年度に達成していた。本年度の研究により、2つ目のステップをいくつかの仮定の下で達成できた。議論の中で、bi-relative dualizing sheafの順像層に関するHareder-Narasimhanフィルトレーション、ファイバーの標準因子に関する2倍写像、そして曲面に関するClifford型の定理を用いている。これらを用いたことで、より良い形で、相対標準因子の自己交点数の評価が得られた。 本年度は、さらにもう一つの新しいテーマに取り組んだ。反標準次数が5以上のweak del Pezzo曲面の局所デルタ不変量を決定した。(局所)デルタ不変量は、Fano多様体のK安定性を調べる上で重要な量である。weak del Pezzo曲面上の局所デルタ不変量を決定する上で、曲面上の素因子の適切な選択が重要となるプロセスがある。素因子を一つ一つ選び、膨大な計算をして、weak del Pezzo曲面の局所デルタ不変量を決定できた。
|