• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実績報告書

スピノールBose-Hubbard模型におけるトポロジカルおよび多体局在相

研究課題

研究課題/領域番号 20J20715
研究機関東京大学

研究代表者

YANG Hong  東京大学, 理学系研究科, 特別研究員(PD)

研究期間 (年度) 2020-04-24 – 2023-03-31
キーワードSPT criticality / Kennedy-Tasaki / duality
研究実績の概要

The concept of duality plays an important role in physics. For example, in quantum spin chains, the Kennedy-Tasaki (KT) duality provides an essential interpretation of the gapped topological phases. In this work, we find that the KT duality has a more significant impact than what has been known: the duality also provides a fundamental understanding of the gapless topological phases in quantum spin-1 chains. Surprisingly, these nontrivial findings can be demonstrated by celebrated models with rather elementary techniques. Considering that the gapless topological phases have been of particular interest recently, we believe our work will stimulate new research in this field.

In quantum spin-1 chains, it has been known that the Kennedy-Tasaki (KT) transformation defines a duality between the symmetry-protected topological (SPT) phase and the symmetry-breaking phase. In our work, we revisit the KT duality and reveal that the duality also works in gapless systems: The KT duality provides a “hidden symmetry breaking” interpretation for the topological criticality. In other words, the KT transformation relates a trivial Ising criticality and an SPT Ising criticality to each other. We demonstrate our arguments by constructing a (1+1)D model which is defined by interpolating between the spin-1 bilinear-biquadratic chain and its KT dual. We find that our model is exactly equivalent to a spin-1/2 XXZ chain at the self-dual point. Since the spin-1/2 XXZ model is exactly solvable, the low-energy theory at the self-dual point becomes clear.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

We made achievements as planned. In particular, our results have been summarized in a paper posted on arXiv, see arXiv:2203.15791.

今後の研究の推進方策

We notice that there is an emergent Lieb-Schultz-Mattis (LSM) anomaly at the self-dual point of our model (interpolation between the spin-1 bilinear-biquadratic chain and its KT dual). We will try to investigate the nature of the emergent LSM anomaly.

  • 研究成果

    (2件)

すべて 2021

すべて 学会発表 (2件)

  • [学会発表] Magnetic and Topological Phases of Spinful Bosons in Optical Lattices2021

    • 著者名/発表者名
      YANG HONG
    • 学会等名
      第3回冷却原子研究会「アトムの会」
  • [学会発表] Criticality, duality, and topology in quantum spin-1 chains2021

    • 著者名/発表者名
      YANG HONG
    • 学会等名
      日本物理学会2021年秋季大会

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi