• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実績報告書

スピノールBose-Hubbard模型におけるトポロジカルおよび多体局在相

研究課題

研究課題/領域番号 20J20715
研究機関東京大学

研究代表者

YANG Hong  東京大学, 理学系研究科, 特別研究員(PD)

研究期間 (年度) 2020-04-24 – 2023-03-31
キーワードemergent anomaly / SPT phase
研究実績の概要

Previously, we revisited the Kennedy-Tasaki duality and revealed the KT duality provides a “hidden symmetry breaking” interpretation for the topological criticality. We also noticed that the KT self-duality is closely related to an emergent Lieb-Schultz-Mattis (LSM) anomaly.

However, the nature of the emergent LSM anomaly was not very clear to us before. Therefore, we focused on investigating the emergent anomaly. Using perturbation theory, we find that the low-energy theory of our spin-1 model near the critical self-dual point is equivalent to a spin-1/2 XYZ chain. This means that, near the self-dual point, the symmetry Z2y \rtimes Z2z × Ztrn of the complete theory reduces to Zy′ × Zz′ × Ztrn in the low-energy theory. In other words, in the low-energy theory, Z4y \rtimes Z2z × Ztrn leads to an LSM anomaly, which results in the absence of a unique gapped ground state. However, Z4y \rtimes Z4z × Ztrn in the spin-1 Hilbert space has no anomaly. In other words, the LSM anomaly around the self-dual point is actually emergent. Since the complete theory in the spin-1 Hilbert space is anomaly-free, the emergent anomaly has to be cancelled by some mechanism. Note that for the gapped symmetry Z2y, the nontrivial group element (π rotation) is identical to -1 in the low-energy theory. This indicates that the ground state is "stacked" on a gapped (weak) symmetry-protected topological (SPT) phase protected by Z2y × Ztrn. It is this SPT phase that cancels the emergent anomaly. We use field theory to demonstrate our argument.

* \rtimes means semi-direct product.

現在までの達成度 (段落)

令和4年度が最終年度であるため、記入しない。

今後の研究の推進方策

令和4年度が最終年度であるため、記入しない。

  • 研究成果

    (3件)

すべて 2023 2022

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件) 学会発表 (2件) (うち国際学会 1件)

  • [雑誌論文] Duality, criticality, anomaly, and topology in quantum spin-1 chains2023

    • 著者名/発表者名
      Yang Hong、Li Linhao、Okunishi Kouichi、Katsura Hosho
    • 雑誌名

      Physical Review B

      巻: 107 ページ: 125158

    • DOI

      10.1103/PhysRevB.107.125158

    • 査読あり / 国際共著
  • [学会発表] Magnetic and Topological Phases of Spinful Bosons in Optical Lattices2022

    • 著者名/発表者名
      YANG HONG
    • 学会等名
      Ultracold Atoms Japan 2022
    • 国際学会
  • [学会発表] Duality, Criticality, Anomaly, and Topology in Quantum Spin-1 Chains2022

    • 著者名/発表者名
      YANG HONG
    • 学会等名
      第17回量 子スピン系研究会

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi