計算資源の発達とデータ取得機会の増大により、標本数と次元がともに大きい高次元データを用いて統計的分析を行う必要性が高まっている。本研究を遂行するに当たり、初年度の前半では高次元平均の推定問題を考えた。標本数に対して次元が大きい場合、平均の推定は非常に不安定になるため標本平均をそのまま利用するのは好ましくない。そこで、推定量を低次元に制限された別の推定量に縮小することで、より安定した推定量が得られる。 これまで次の成果が得られた。(a1)まず平均の事前分布に精度行列が退化した特異な正規分布を設定し経験ベイズ推定量を導出した。この事前分布は、パラメータの一部に無情報事前分布を課すことに相当する。(a2)次に、モデルの誤特定の下での提案推定量の二乗誤差を評価した。(a3)さらに、提案推定量がミニマクス最適になる十分条件が導かれた。(a4)最後に、提案推定量の性能を数値的に評価した。 本研究の重要な応用先の一つに小地域推定がある。Fay-Herriotモデルにおいて変量効果に特定の構造を仮定すると、その精度行列は退化してしまう。そこで提案推定量を用いることにより地域効果の推定が可能となる。次の成果が得られた。(b1)条件付き二乗誤差及びその普遍推定量を導出した。(b2)実データ分析として地理的な構造を考慮して都道府県ごとの教育・医療支出を推定した。以上の研究成果の一部を論文にまとめ、現在学術雑誌に投稿中である。
|