ダイヤモンドの起源と形成場の解明は,地球深部における炭素循環を解明する重要な糸口になると期待されるが,マントル深部由来のダイヤモンドの起源に関する統一的な見解は未だ得られていない.本研究では,地球深部においてダイヤモンドの形成と密接な関連があるとされる炭酸塩鉱物と還元的な流体(C-H-O流体)の2つの炭素源物質に着目し,より現実的な地球内部条件を再現した高温高圧実験を行うことで,マントル深部のダイヤモンド形成場で想定される炭酸塩―流体の相互作用の詳細解明に取り組んだ.走査型電子顕微鏡・透過型電子顕微鏡を用いて回収試料中の微細組織観察を実施し,反応プロセスの解明を試みた.様々な温度圧力条件から回収した試料を注意深く観察した結果,実験温度条件によってマグネサイトの分解相が異なることが明らかになり,マグネサイトとC-H-O流体の反応プロセス解明の大きな手掛かりとなった.さらに,マグネサイトとC-H-O流体に30‰程度の比較的大きな炭素同位体差をつけて炭酸塩-流体共存下で高圧実験合成したダイヤモンドの炭素同位体組成をNanoSIMS分析によって測定し,反応プロセスを明らかにすることを目指した.本研究で採用しているイオン研磨による研磨断面の表面状態がNanoSIMS分析に及ぼす影響は未知数であったが,5~10‰程度の比較的大きな誤差を許容できる場合は,高圧実験~イオン研磨~NanoSIMS分析という一連の試料調整・作業を円滑に実施可能であることを確認できた.分析条件や補正方法に最適化の余地はあるが,イオン研磨を用いた高圧実験試料のNanoSIMS分析は恐らく世界初の成功例であり,これまで同位体分析が難しかった高圧実験回収試料の分析において,新たな突破口を開く可能性を有していると言える.一連の成果は国内外の学会で複数回の発表を行い,筆頭著者として国際誌へ 2 報を投稿準備中である.
|