研究実績の概要 |
粗Baum-Connes予想は、微分トポロジーへの応用があるということ、および、ヒルベルト空間への粗埋め込み可能性や漸近次元の有限性などの粗幾何学における重要な性質の応用先であるということから、幾何学者やトポロジストを中心とした様々な研究者に興味を持たれている。最近も、新しい結果がいろいろと生まれているという状況にあり、活発な研究領域である。また、粗幾何学は、距離空間が主な研究対象であるが、有限生成群は語距離によって距離空間とみなせるため、これも代表的な対象であり、幾何学的群論との関係が深い。本年度も昨年度に引き続き、以上に関わる研究を進め、とくに、加藤本子(琉球大学)氏との共同研究において、アルティン群の非シリンダー的双曲性(負曲率性の一種)に関して、昨年度に引き続き、新たな定理を発見および証明し、それらについての論文作成準備を行った。アルティン群に関わる研究報告あるいは広報として、「無限型のアルティン群の非シリンダー的双曲性について」というタイトルで、RIMS共同研究:変換群論の新潮流で講演を行った。また、「 Acylindrical hyperbolicity of Artin groups associated with graphs that are not cones」(Motoko Kato, Shin-ichi Oguni)という論文が、専門誌のGroups, Geometry, and Dynamicsに受理された。また、「第6回幾何学的群論ワークショップ」を松山市において、深谷友宏氏(東京都立大学)などと共同で企画・運営し、研究者間の情報共有や相互理解を深め、自身にとっても参加者にとっても研究の促進をはかる場とできた。
|