研究実績の概要 |
曲面群と負曲率の幾何に関連した以下に述べる2つの結果を得た。これらを論文にまとめ,プレプリントとしてarXiv上で一般に公開した。また,これらの結果を研究集会などで講演した。 まず3次元の多様体の分類において,双曲多様体を理解することは重要である。3次元のgeometrically finiteな双曲多様体は,理想境界のRiemann面の構造によってパラメラー付されることがよく知られている。これに類似したパラメター付を、双曲多様体のconvex core上のmeasured laminationによりできるという予想が未解決問題であるBonahonとOtalはこの予想の解決向けて,大きな貢献をしている。本年度の研究で大鹿健一氏との共同研究に別の視点から,より位相幾何学的なアプローチを与えた。特により一般のgeometrically infiniteな曲面群に既存の結果を拡張させた。 次にRiemann面上の2次正則微分の空間は、有限次元の複素ベクトル空間をなす。このベクトル空間は,対応する複素射影構造のホロノミーにより,基本群のP S L(2, C)への表現空間,つまりP S L(2,C)指標多様体に真に解析的に埋め込まれている。この像はPoincare Holonomy Variety またはsl(2,C)-operと呼ばれ,双曲幾何学などの関係から重要な複素解析的部分多様体である。私は,このholonomy varieties類似をThurstonによる複素射影構造のパラメター付の観点からP S L(2,C)指標多様体に構成した。また,Thurston のパラメター付は実解析的な部分多様体を与えることから,これの複素化を行った。そのために曲面群のP S L(2,C)の直積への表現のbending変形を導入した。
|