• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実績報告書

指標多様体上の幾何と写像類群作用を用いた算術的クライン群の分類

研究課題

研究課題/領域番号 20K03612
研究機関奈良女子大学

研究代表者

山下 靖  奈良女子大学, 自然科学系, 教授 (70239987)

研究期間 (年度) 2020-04-01 – 2023-03-31
キーワード双曲幾何学 / クライン群
研究実績の概要

曲面Σの基本群πからリー群Gへの表現全体の空間Hom(π,G)には群Gが共役により作用する。この作用による幾何学的不変式論の意味での商空間Xを指標多様体という。この指標多様体を、表現の像が離散群になる部分とそうでない部分に分割すると前者はΣのG構造の変形の空間とみなすことができる。特にGがSL(2,C)の場合は双曲幾何構造の変形空間であり、重要な研究対象である。特に離散部分群はクライン群とよばれ、重要な研究対象である。また、指標多様体には曲面Σの写像類群が自然に作用し、この作用の複雑さによっても指標多様体は2つに分割される。これら2つの関係は未解明な部分が多い。
今年度は、SL(2,C)の部分群で楕円型の元2つによって生成されるクライン群で、算術的とよばれる条件をみたすものの分類のための研究を継続した。楕円型の元はその位数で特徴づけることができるが、特に位数が6以下の場合において、どのような算術的クライン群が存在しうるかについて、計算機を用いた実験を継続した。クライン群は指標多様体のパラメータを用いて記述され、それが算術的になるためにはそのパラメータが代数的整数であって四元数代数等に関する一定の条件をみたす必要があることが知られている。さらに、指標多様体上の写像類群作用に関して、BowditchのQ条件というものをみたさなければならないことが予想されている。そのため、これらに関する計算機実験を様々なパラメータについて進めることで、算術的クライン群の完全分類に向けた候補を与えるための研究を進展させた。
特に、Riley sliceおよび関連した空間における計算を進展させ、研究発表を行った。さらに、双曲多角形に関連して得られるクライン群の計算結果について、研究発表を行った。

  • 研究成果

    (2件)

すべて 2022

すべて 学会発表 (2件) (うち招待講演 1件)

  • [学会発表] Revisiting the moduli space of right-angled hyperbolic pentagon2022

    • 著者名/発表者名
      山下靖
    • 学会等名
      Geometry in Low dimensions 2022
  • [学会発表] Riley sliceと仲間たち2022

    • 著者名/発表者名
      山下靖
    • 学会等名
      早稲田大学双曲幾何幾何学的群論セミナー
    • 招待講演

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi