研究実績の概要 |
本研究の目的は対称空間に関する以下の二つのトピックについて、有限グラフを通じて理解することである。(A)対称R空間M上の大対蹠集合Sから自然に得られ る有限グラフΓについてMの不変量とΓの不変量の関係性を見出す: (B)非コンパクト型エルミート対称空間Mにおける等質ラグランジュ部分多様体Lの構成・分類 問題を根付き木Tを用いて行う。この(A)(B)のそれぞれについて今年度の研究成果を以下で述べる。 (A)昨年度までは対称空間の大対蹠集合の性質を調べていたが、今年度は対称空間の枠組みをより一般化したカンドルの構造について深く研究した。具体的にはリー群の一般化に対応する一般化アレキサンダーカンドルについて様々なカンドル不変量を調べた。この研究の成果としては、特別な有限群から得られる一般化アレキサンダーカンドルについては、基礎となる群が異なっていたとしても、2つの一般化アレキサンダーカンドルがカンドル同型であるための必要十分条件を得ることができた。今後は特殊な条件を取り除いてすべての有限群に対しての一般化アレキサンダーカンドルがカンドル同型であるための必要十分条件を調べていく。 (B)昨年度にひきつづき等質ラグランジュ部分多様体Lの構成・分類問題を考えた。昨年度、Sp(n-1,R)/U(n-1)のLから帰納的にSp(n,R)/U(n)の等質ラグランジュ部分多様体が作れるかという問題を主に考えていたが、思った結果は得ることができなかった。一方で今年度はSU(p,p)/S(U(p)×U(p))についてのLの構成について調べた。その結果、Sp(n,R)/U(n)の場合の根付き木を用いたテクニックをSU(p,p)/S(U(p)×U(p))の場合にもある程度適応できることが分かった。今後はSU(p,p)/S(U(p)×U(p))のLの構成・分類にも力を入れて調べていく。
|