• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実施状況報告書

Mathematical foundations for the reconfiguration paradigm

研究課題

研究課題/領域番号 20K03718
研究機関九州大学

研究代表者

GAINA Daniel  九州大学, マス・フォア・インダストリ研究所, 助教 (80595778)

研究分担者 溝口 佳寛  九州大学, マス・フォア・インダストリ研究所, 教授 (80209783)
研究期間 (年度) 2020-04-01 – 2024-03-31
キーワードinstitution / hybrid logic / dynamic logic / forcing / omitting types theorem
研究実績の概要

The definition of institution formalizes the intuitive notion of logic in a category-based setting. Similarly, the concept of stratified institution provides an abstract approach to Kripke semantics. This includes hybrid logics, a type of modal logics expressive enough to allow references to the nodes/states/worlds of the models regarded as relational structures, or multi-graphs.

Applications of hybrid logics involve many areas of research such as computational linguistics, transition systems, knowledge representation, artificial intelligence, biomedical informatics, semantic networks and ontologies. We have provided a unified foundation for developing formal verification methodologies to reason about Kripke structures by defining proof calculi for a multitude of hybrid logics in the framework of stratified institutions. In order to prove completeness, the paper introduces a forcing technique for stratified institutions with nominal and frame extraction and studies a forcing property based on syntactic consistency. The proof calculus is shown to be complete and the significance of the general results is exhibited on a couple of benchmark examples of hybrid logical systems.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Everything is going according to the initial plan, which is described in the application in detail.

今後の研究の推進方策

Within 2021FY we are planning to study an omitting types theorem (OTT) for hybrid dynamic first-order logic with rigid symbols (i.e. including symbols with fixed interpretations across worlds) and sufficiently expressive fragments. Observe that an OTT for the full logic would not necessarily have given us the property for its fragments, thus the generality of our proof is an important feature. The result will be obtained using model-theoretic forcing.
One application that we provide is a completeness theorem for constructor-based logic, following an analogous classical result for omega-logic. Constructor-based completeness is a modern approach to the well-known ω-completeness, which has applications in formal methods. We make the result independent of the arithmetic signature by working over an arbitrary vocabulary where we distinguish a set of constructors which determines a class of Kripke structures reachable by constructors.

次年度使用額が生じた理由

Initially, I plan to go to TPP2020, NII, WADT2020 and visit Bremen to develop my research, but these events were canceled due to the COVID-19.
In 2021FY, I am planning (1)a visit La Trobe University, (2)a visit to The University of Queensland, (3) an invitation for Prof. Tomasz Kowalski for joint research collaboration, and (4) a participation to an international conference in Europe.

  • 研究成果

    (6件)

すべて 2020 その他

すべて 国際共同研究 (1件) 雑誌論文 (3件) (うち国際共著 3件、 査読あり 3件) 学会発表 (2件) (うち国際学会 2件)

  • [国際共同研究] La Trobe University(オーストラリア)

    • 国名
      オーストラリア
    • 外国機関名
      La Trobe University
  • [雑誌論文] Stability of termination and sufficient-completeness under pushouts via amalgamation2020

    • 著者名/発表者名
      Gaina Daniel、Nakamura Masaki、Ogata Kazuhiro、Futatsugi Kokichi
    • 雑誌名

      Theoretical Computer Science

      巻: 848 ページ: 82~105

    • DOI

      10.1016/j.tcs.2020.09.024

    • 査読あり / 国際共著
  • [雑誌論文] Fraisse-Hintikka theorem in institutions2020

    • 著者名/発表者名
      Gaina Daniel、Kowalski Tomasz
    • 雑誌名

      Journal of Logic and Computation

      巻: 30 ページ: 1377~1399

    • DOI

      10.1093/logcom/exaa042

    • 査読あり / 国際共著
  • [雑誌論文] Forcing and Calculi for Hybrid Logics2020

    • 著者名/発表者名
      Gaina Daniel
    • 雑誌名

      Journal of the ACM

      巻: 67 ページ: 1~55

    • DOI

      10.1145/3400294

    • 査読あり / 国際共著
  • [学会発表] Forcing and Calculi for Hybrid Logics2020

    • 著者名/発表者名
      Daniel Gaina
    • 学会等名
      Logic and Geometry in Informatics (ALGI)
    • 国際学会
  • [学会発表] Forcing and its applications in hybrid-dynamic logics2020

    • 著者名/発表者名
      Daniel Gaina
    • 学会等名
      Australasian Logic Group
    • 国際学会

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi