研究課題/領域番号 |
20K03941
|
研究機関 | 大学共同利用機関法人高エネルギー加速器研究機構 |
研究代表者 |
湯浅 富久子 大学共同利用機関法人高エネルギー加速器研究機構, 計算科学センター, 名誉教授 (00203943)
|
研究期間 (年度) |
2020-04-01 – 2024-03-31
|
キーワード | 超一様分布列 / ファインマン積分 / 高次元数値積分 / 並列化手法 |
研究実績の概要 |
場の理論における摂動法による数値計算は、実験と理論を比較するための重要なツールである。そこでは、ループを有するファインマン・ダイアグラムの計算が現れ、ファインマン積分を求めることが必要となる。ファインマン積分では、素粒子の質量及び外線の運動量がパラメータとして関与し、その値によっては数値的な不安定性や発散が生じて積分は困難になる。これに対して我々は、積分に現れる発散を「数値積分法」と「外挿法」の組み合わせで数値的に取り扱う方法を開発している。この方法は完全に数値的な方法なため、統一的で汎用性が高い。一方で、ファインマン・ダイアグラムのループの数が大きくなると、積分の次元数があがり計算時間が長くなってしまうという現実的な課題がでてくる。本研究の目的は、超一様分布列を用いることで、従来より100倍以上高速に収束し、かつ高精度にファインマン積分を実行する数値的な方法(直接計算法という)を開発することである。 令和4年度前半は、令和3年度に引き続き4ループセルフエネルギー型トポロジーのファインマン積分を事例に、直接計算法の性能向上のための開発と性能試験を行った。具体的には、内線数が9のダイアグラムに取り組んだ。これは8次元のファインマン積分を実行することになるが、Rank-1 Lattice Ruleによる超一様分布列を用いたQMC法で数値積分を実行し、高い精度を維持しつつ従来より短い計算時間で結果が得られることを確認した。 令和4年度後半は、2ループセルフエネルギー型トポロジーのファインマン積分の計算で、外線の運動量を変化させ閾値を超えるエネルギー領域での数値計算を行った。この領域では実部のみならず虚部も出現するため、二重に外挿法を適用する必要が生ずる。これに対応するため、これまでに開発した数値計算法に二重外挿の機能を追加するためのコード開発を行い性能試験を行った。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
3: やや遅れている
理由
令和4年度はコロナウィルスによる影響が徐々に緩和される傾向にあったが、COVID-19以前のような自由闊達な研究活動を行うまでには至らなかった。国内外で開催された国際会議や学会においては対面形式とオンライン形式の併用が一般的になり、感染拡大防止のため海外等の遠隔地に出向く機会をもてなかった。このため、分野を同じくする外国人研究者との直接の意見交換やアドバイスの授受が激減し、研究への負の影響があった。
|
今後の研究の推進方策 |
本研究で取り扱うファインマン・ダイアグラムのうち、最もループ数の高い4ループではファインマン積分の次元数が10次元となるものもある。一般に、数値積分では次元数が増えれば、計算時間が長くなり性能が低下してしまう。我々は、4ループセルフエネルギー型ダイアグラムのうち代表的なトポロジーを選択し、数値計算法の改善と性能低下を防ぐための開発を継続してきている。令和4年度前半までに、10次元となる事例までを含み、4ループ積分のための計算コードの開発と性能試験を実施した。令和5年度には、これまでに開発した4ループ計算コードのさらなる性能改善と整備作業を行う予定である。
また、令和5年度にはセルフエネルギー型トポロジーで外線の運動量を変化させ、閾値を超えるエネルギー領域でのファインマン積分の数値計算も行う。この領域では、実部のみならず虚部も出現するため二重に外挿法を適用する必要が生じる。二重外挿の計算コードは、一重外挿より複雑となるため、2ループあるいは3ループのセルフエネルギー型のトポロジーのファインマン・ダイアグラムを事例として、前年度後半に引き続きコード開発を進めていく計画である。
令和5年度からは、研究代表者と研究分担者(一橋大学、台坂博)の2名で研究を推進するよう体制を変更した。令和5年1月には、本研究で使用する計算サーバを分担者が管理するサーバルームに移動した。本研究では、計算機が重要な役割を果たすため、その能力を維持することは極めて重要である。研究分担者に計算サーバの能力を最大限に引き出していただき、2名で本研究を推進していく。
|
次年度使用額が生じた理由 |
コロナウィルスの影響で、現地参加を計画していた二つの国際会議がリモート参加となったため外国旅費を全く使用しなかった。一部の国内の学会や研究集会には現地参加できたが、研究協力者らとの集合しての研究活動は一回のみ実施するにとどまった。このため、国内旅費の使用が少なくなった。これにより旅費の使用額が低く抑えられ、次年度使用額が生じた。
令和5年度はウィズコロナの時代にはいり、国際会議や研究集会に現地参加する機会が増えていくと期待できる。その場合にはできるだけ現地に出向き、関連分野の研究者らと対面で意見交換し、そこで得られる知見を本研究に生かしていく。また、研究協力者らと集合して研究活動を行う機会も増やしていく計画である。そのために旅費を使用する。
|