• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実施状況報告書

地方自治体での利用を想定した道路路面の健全度評価システムの開発

研究課題

研究課題/領域番号 20K04640
研究機関山梨大学

研究代表者

吉田 純司  山梨大学, 大学院総合研究部, 准教授 (90345695)

研究期間 (年度) 2020-04-01 – 2023-03-31
キーワード維持管理 / 道路舗装路面 / 画像処理 / 機械学習
研究実績の概要

本研究では道路に関連する構造要素のうち,道路の安全性に直接的に繋がる舗装路面を対象とし,地方自治体が行う日常点検において路面状態を画像で撮影する計測ユニットを開発する.加えて,計測した画像データから路面のクラックを抽出し,抽出したクラックの形状・長さ等から簡易的に健全度を評価して,それを地図上に表示するシステムを構築する.
2020年度は,上記のうち,画像による計測ユニットの開発と,路面からクラックを抽出し,健全度を評価するシステムの構築を行った.計測ユニットについては,小型のCCDカメラと,車両用の吸盤による固定装置を用い,PCに直接画像を記録するシステムを構築した.また,位置情報として安価かつ高精度なGPS装置を同時にPCに記録し,タイムスタンプで両者の同期を計っている.
次に,本計測ユニットを一般車両の天井部に取り付け,山梨県内の道路路面の計測を行った.得られた画像には,車両,歩道,ガードレール,縁石など,路面外のものに加え,路面内においても影,ジョイント,マンホールなどがみられた.そこで,本研究では,まず,画像中を,路面領域,路面領域外,マンホール,ジョイントの4種類にピクセルごとに分類するシマンテックセグメンテーションを行うためのニューラルネットワークを構築した.分類精度は,95%以上の高精度のネットワークを構築することに成功した.続いて,得られた路面領域において,グリッドを生成し,各グリッドを,線クラック,面クラック,クラックなしの3種類の分類し,それらよりクラック率を算出するニューラルネットワークを構築した.こちらについては,分類精度が90%程度であり,今後,更なる精度の向上を行っている予定である.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

当初,クラックの評価の前処理である路面領域の抽出を行うシステムの構築が予想以上に高精度かつ早く終えることができた.そのため,クラックの評価の行うためのニューラルネットワークの構築に,2020年度のうちに着手することができ,かつこれについてもある程度の成果が得られた.現段階の評価手法については,2021年度は,もう少し精度の向上を目指す予定である.

今後の研究の推進方策

2021年度については,クラックの評価手法について,精度の向上を目指す.また,これについても,早めに成果が得られれば,評価結果を視覚的に表示するためのシステムの構築についても着手していくつもりである.

  • 研究成果

    (1件)

すべて 2020

すべて 学会発表 (1件)

  • [学会発表] 深層学習を用いた高速道路における舗装路面画像のクラック分類2020

    • 著者名/発表者名
      清水裕介,吉田純司,小野義道,竹谷晃一
    • 学会等名
      土木学会第75回年次学術講演会

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi