• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実施状況報告書

Toward New-Generation AI-Based CAD System: Development of Interpretable Deep Learning-Based CAD System for Breast Cancer Diagnosis Using Mammogram

研究課題

研究課題/領域番号 20K08012
研究機関仙台高等専門学校

研究代表者

張 暁勇  仙台高等専門学校, 総合工学科, 准教授 (90722752)

研究分担者 費 仙鳳  東北文化学園大学, 科学技術学部, 准教授 (20620470)
研究期間 (年度) 2020-04-01 – 2023-03-31
キーワードMammograpy / Deep Learning / Interpretablity / Computer-Aided Diagnosis
研究実績の概要

The purpose of this research is to develop an interpretable deep learning (DL)-based computer-aided diagnosis (CAD) system for breast cancer diagnosis in mammogram. According to the research plan, the research achievements in the FY2020 are summarized as follows.
(1) Tow datasets, including mammograms, radiologist annotations, and biopsy-proven diagnosis results, have been collected at Tohoku university hospital and Miyagi cancer society.
(2) Preliminary experiments have been conducted to utilize several state-of-the-art end-to-end DL models, such as faster R-CNN, SSD, and YOLO, to detect/localize the suspicious lesions in mammograms.
(3) Four papers have been published in international conferences.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

In the FY2020, the research has been conducted and progressed smoothly according to the research plan. Two mammogram datasets obtained form Tohoku university hospital (about 300 cases) and Miyagi cancer society (about 3,000,000 cases) have been well organized for DL model usage. The data annotation is conducting with cooperation of radiologist in Tohoku university hospital. For papers related with DL-based CAD system have been published in international conferences, and two papers are planned to submit to prime international journals (scientific report, and medical physics).

今後の研究の推進方策

According to the research plan, the main research in FY2021 will be focused on the following three tasks. (1) Continually collecting and organizing the mammogram dataset, especially collecting the radiologist annotation, for training the DL models. (2) Due to the insufficiency and unbalance of training data, avoiding the overfitting problem and improve the training accuracy will be focused during the development of CAD system. (3) Several interpretable DL techniques, such Gradient-weighted class activation mapping (CAM), generative adversarial network (GAN), will be implemented tentatively and observe their performance for generating an interpretable diagnosis result.

次年度使用額が生じた理由

Due to the COVID-19 pandemic, the travel expense used for attending the domestic and international conferences was not used during the FY2020. We plan to use these part of expense for journal publication fee and international conference registration fee in the next fiscal year.

  • 研究成果

    (8件)

すべて 2020

すべて 雑誌論文 (2件) (うち査読あり 2件) 学会発表 (6件) (うち国際学会 4件)

  • [雑誌論文] Hidden Markov Model-based Extraction of Target Objects in X-ray Image Sequence for Lung Radiation Therapy2020

    • 著者名/発表者名
      Shindo Masahiro、Ichiji Kei、Homma Noriyasu、Zhang Xiaoyong、Okuda Shungo、Sugita Norihiro、Yamaki Shunsuke、Takai Yoshihiro、Yoshizawa Makoto
    • 雑誌名

      IEEJ Transactions on Electronics, Information and Systems

      巻: 140 ページ: 49~60

    • DOI

      10.1541/ieejeiss.140.49

    • 査読あり
  • [雑誌論文] Adaptive Gaussian Mixture Model-Based Statistical Feature Extraction for Computer-Aided Diagnosis of Micro-Calcification Clusters in Mammograms2020

    • 著者名/発表者名
      Zhang Zhang、Zhang Xiaoyong、Ichiji Kei、Takane Yumi、Yanagaki Satoru、Kawasumi Yusuke、Ishibashi Tadashi、Homma Noriyasu
    • 雑誌名

      SICE Journal of Control, Measurement, and System Integration

      巻: 13 ページ: 183~190

    • DOI

      10.9746/jcmsi.13.183

    • 査読あり
  • [学会発表] Deep neural network-based prediction of synthetic dual-energy X-ray fluoroscopic images: a feasibility study2020

    • 著者名/発表者名
      Jiaoyang Wang, Kei Ichiji1, Noriyasu Homma, Xiaoyong Zhang and Yoshihiro Takai
    • 学会等名
      AAPM 2020
    • 国際学会
  • [学会発表] A Deep Learning Aided Drowning Diagnosis for Forensic Investigations Using Post-Mortem Lung CT Images2020

    • 著者名/発表者名
      Homma, Noriyasu; Zhang, Xiaoyong; Qureshi, Amber Habib; Konno, Takuya; Kawasumi, Yusuke; Usui, Akihito; Funayama, Masato; Bukovsky, Ivo; Ichiji, Kei; Sugita, Norihiro; Yoshizawa, Makoto
    • 学会等名
      42nd Engineering in Medicine and Biology Conference (EMBC 2020)
    • 国際学会
  • [学会発表] Human ability enhancement for reading mammographic masses by a deep learning technique2020

    • 著者名/発表者名
      Homma, Noriyasu, Kyohei Noro, Xiaoyong Zhang, Yutaro Kon, Kei Ichiji, Ivo Bukovsky, Akiko Sato, and Naoko Mori
    • 学会等名
      2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
    • 国際学会
  • [学会発表] An Interpretable DL-Based Method for Diagnosis of H. Pylori Infection Using Gastric X-ray Images2020

    • 著者名/発表者名
      Reima Ishii, Xiaoyong Zhang, Noriyasu Homma
    • 学会等名
      2021 IEEE 3rd Global Conference on Life Sciences and Technologies
    • 国際学会
  • [学会発表] Feature Fusionに基づく深層学習を用いた乳房X線画像上の小病変検出2020

    • 著者名/発表者名
      今佑太朗,張暁勇,本間経康,吉澤誠,
    • 学会等名
      計測自動制御学会,東北支部第329回研究集会
  • [学会発表] 深層学習に基づく転移学習を用いた胃 X 線画像におけるピロリ感染の鑑別に関する研究2020

    • 著者名/発表者名
      石井玲真,張暁勇,本間経康,
    • 学会等名
      計測自動制御学会,東北支部第330回研究集会

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi