• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実施状況報告書

Development of Fast and Highly Effective Feature Subset Selection Algorithms based on Novel Integration of Quantum Computing and Machine Learning

研究課題

研究課題/領域番号 20K11939
研究機関岩手県立大学

研究代表者

チャクラボルティ バサビ  岩手県立大学, ソフトウェア情報学部, 教授 (90305293)

研究期間 (年度) 2020-04-01 – 2023-03-31
キーワードfeature subset selection / metaheuristic algorithm / quantum inspired
研究実績の概要

This year we have extended and applied our previously developed quantum inspired owl search algorithm (QIOSA) in last year for high dimensional microarray gene data. The algorithm has been modified to two step process to reduce computational time for high dimensional data by incorporating an ensemble based filter feature selection in the first step and a filter based search function in the final step to find out the optimal feature subset. Simulation experiments with several high dimensional data show that the proposed algorithm performs better than many state-of-the-art similar feature selection algorithms in terms of cardinality of the selected feature subset, classification accuracy and computational time.

現在までの達成度 (区分)
現在までの達成度 (区分)

3: やや遅れている

理由

Due to COVID situations in India, we could not collaborate properly with our research collaborators in India. We could not execute our previous plans as institutions were closed for a long time. We could not also visit India to have longer collaborations for implementation of our algorithms and having input for one of the collaborators regarding quantum computing. We only could collaborate via zoom meetings.

今後の研究の推進方策

As now COVID situation is slightly improved, principal investigator is planning to visit Collaborator's university to expedite the research, complete the implementation part pf quantum feature selection algorithm and proposal of the general framework of quantum machine learning with the help of members of research collaborators.

次年度使用額が生じた理由

We could not attend international conference and use foreign resources due to border restrictions and unavailability respectively.

This year we plan to 1) Attend International conference to present our research result 2) Use foreign resources (quantum computer platform) for completion of research 3) Publish our research results in international journal

  • 研究成果

    (3件)

すべて 2021

すべて 雑誌論文 (2件) (うち国際共著 1件、 査読あり 2件、 オープンアクセス 2件) 学会発表 (1件) (うち国際学会 1件)

  • [雑誌論文] Comparative Study of Univariate and Multivariate Long Short-Term Memory for Very Short-Term Fore- casting of Global Horizontal Irradiance2021

    • 著者名/発表者名
      Ashis Kumar Mandal, Rikta Sen, Saptarsi Goswami and Basabi Chakraborty
    • 雑誌名

      Symmetry (MDPI)

      巻: 13(8) ページ: 1544 -1563

    • DOI

      10.3390/sym13081544

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] A Critical Study on Stability Measures of Feature Selection with a Novel Extension of Lustgarten Index2021

    • 著者名/発表者名
      R. Sen, A. K. Mandal and B. Chakraborty
    • 雑誌名

      Machine Learning and Knowledge Extraction (MDPI)

      巻: 3(4) ページ: 771-787

    • DOI

      10.3390/make3040038

    • 査読あり / オープンアクセス
  • [学会発表] Performance Analysis of Extended Lust- garten Index for Stability of Feature Selection2021

    • 著者名/発表者名
      Basabi Chakraborty
    • 学会等名
      2021 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)
    • 国際学会

URL: 

公開日: 2022-12-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi