• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実施状況報告書

Healthcare Risk Prediction on Data Streams Employing Cross Ensemble Deep Learning

研究課題

研究課題/領域番号 20K11955
研究機関岩手県立大学

研究代表者

藤田 ハミド  岩手県立大学, ソフトウェア情報学部, 教授 (30244990)

研究期間 (年度) 2020-04-01 – 2023-03-31
キーワード知能情報学関連 / Machine Learning / Health Care System / Deep Learning
研究実績の概要

We have used ensemble deep learning techniques by constructing Deep Neural Networks (DNNs) based on assembled CNN in architecture of two GPUs in cross
layered connection. Also, we have one GUP system, running as backup for training experiments using large scale data for comparison purpose. I could achieve good research results using zero short learning on multivariate data. Also I have trained the deep-learning architecture on dynamic data. The results was promising and therefore we publish three journal articles.
We achieved good results using . However, the accuracy for some healthcare data analytics need to be enhanced. The year 2020 was hard due to the pandemic as traveling and moving around was tight.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The experimental results provided high accuracy outcome, by testing it on the learning system, however due to the pandemic traveling restrictions, it was rather not easy to expand the results with European collaborators that I contribute with in terms of the innovative idea in Deep learning using semi-supervised learning methods. Some researchers that I collaborate are looking to test the machine learning developed model on Parkinson’s Disease: as in the joint publication: A. Butt, E. Rovini, Hamido Fujita, C. Maremmani, F. Cavallo, “Data-Driven Models for Objective Grading Improvement of Parkinson’s Disease”, Annals of Biomedical Engineering (2020) 48, p.2976-2987 https://doi.org/10.1007/s10439-020-02628-4. This is currently to be test for more accuracy on our system, also for Alzheimer.

今後の研究の推進方策

For the year 2021: testing data to revise the built architecture for learning. Still some multivariate health care data, are not providing high quality prediction, maybe this is related to data nature. it needs extract further features to refine the training mechanism.
Also to test multi view learning by my joint work Consensus Multi-view Clustering Model for Predicting Alzheimer’s Disease Progression" Computer Methods and Programs in Biomedicine, V.199, Feb. 2021, 105895. These new results are to be expanded and be used to detect other health issues like my work: D. Cimr, F. Studnicka, Hamido Fujita, R. Cimler, J. Slegr, "Application of mechanical trigger for unobtrusive detection of respiratory disorders from body recoil micro-movements" J.Computer Methods and Programs in Biomedicine.

次年度使用額が生じた理由

(1) 新型コロナウイルスの影響で海外出張が中止になったため
(1) Due to the pandemic the traveling for conference and meeting with other research collaborator was not possible,
(2) Some development was delayed due to traveling restrictions.
Therefore (1) and (2) need to be done in the year 2021 to construct the 2nd phase block-2, related to revise the training algorithm for better accuracy, and test it with more related data set with development team.

  • 研究成果

    (14件)

すべて 2021 2020 その他

すべて 国際共同研究 (2件) 雑誌論文 (6件) (うち国際共著 6件、 査読あり 6件) 学会発表 (6件) (うち国際学会 6件)

  • [国際共同研究] University of Hradec Kralove/Faculty of Science/Rokitanskeho 62, Hradec Kralove 50003(チェコ)

    • 国名
      チェコ
    • 外国機関名
      University of Hradec Kralove/Faculty of Science/Rokitanskeho 62, Hradec Kralove 50003
  • [国際共同研究] OLIMPIA Projec/The BioRobotics Institute/Viale Rinaldo Piaggio,(イタリア)

    • 国名
      イタリア
    • 外国機関名
      OLIMPIA Projec/The BioRobotics Institute/Viale Rinaldo Piaggio,
  • [雑誌論文] CMC: A consensus multi-view clustering model for predicting Alzheimer’s disease progression2021

    • 著者名/発表者名
      Zhang Xiaobo、Yang Yan、Li Tianrui、Zhang Yiling、Wang Hao、Fujita Hamido
    • 雑誌名

      Computer Methods and Programs in Biomedicine

      巻: 199 ページ: 105895~105895

    • DOI

      10.1016/j.cmpb.2020.105895

    • 査読あり / 国際共著
  • [雑誌論文] Cluster-based zero-shot learning for multivariate data2020

    • 著者名/発表者名
      Hayashi Toshitaka、Fujita Hamido
    • 雑誌名

      Journal of Ambient Intelligence and Humanized Computing

      巻: 12 ページ: 1897~1911

    • DOI

      10.1007/s12652-020-02268-5

    • 査読あり / 国際共著
  • [雑誌論文] Forecasting of COVID19 per regions using ARIMA models and polynomial functions2020

    • 著者名/発表者名
      Hernandez-Matamoros Andres、Fujita Hamido、Hayashi Toshitaka、Perez-Meana Hector
    • 雑誌名

      Applied Soft Computing

      巻: 96 ページ: 106610~106610

    • DOI

      10.1016/j.asoc.2020.106610

    • 査読あり / 国際共著
  • [雑誌論文] Recognition of ECG signals using wavelet based on atomic functions2020

    • 著者名/発表者名
      Hernandez-Matamoros Andres、Fujita Hamido、Escamilla-Hernandez Enrique、Perez-Meana Hector、Nakano-Miyatake Mariko
    • 雑誌名

      Biocybernetics and Biomedical Engineering

      巻: 40 ページ: 803~814

    • DOI

      10.1016/j.bbe.2020.02.007

    • 査読あり / 国際共著
  • [雑誌論文] A novel approach to create synthetic biomedical signals using BiRNN2020

    • 著者名/発表者名
      Hernandez-Matamoros Andres、Fujita Hamido、Perez-Meana Hector
    • 雑誌名

      Information Sciences

      巻: 541 ページ: 218~241

    • DOI

      10.1016/j.ins.2020.06.019

    • 査読あり / 国際共著
  • [雑誌論文] Data-Driven Models for Objective Grading Improvement of Parkinson’s Disease2020

    • 著者名/発表者名
      Butt Abdul Haleem、Rovini Erika、Fujita Hamido、Maremmani Carlo、Cavallo Filippo
    • 雑誌名

      Annals of Biomedical Engineering

      巻: 48 ページ: 2976~2987

    • DOI

      10.1007/s10439-020-02628-4

    • 査読あり / 国際共著
  • [学会発表] Combining Siamese Network and Correlation Filter for Complementary Object Tracking2021

    • 著者名/発表者名
      Kosuke Honda, Hamido Fujita
    • 学会等名
      The 34th International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems
    • 国際学会
  • [学会発表] One-class Classification approach using Feature-shift Prediction subtask for vector data2021

    • 著者名/発表者名
      Toshitaka Hayashi, Hamido Fujita
    • 学会等名
      The 34th International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems
    • 国際学会
  • [学会発表] Applying Cluster-Based Zero-Shot Classifier to Data Imbalance Problems2020

    • 著者名/発表者名
      Toshitaka Hayashi, Kotaro Ambai, Hamido Fujita
    • 学会等名
      The 33th International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems
    • 国際学会
  • [学会発表] he Differential Feature Detection and the Clustering Analysis to Breast Cancers2020

    • 著者名/発表者名
      Juanying Xie, Zhaozhong Wu, Qin Xia, Lijuan Ding, Hamido Fujita
    • 学会等名
      The 33th International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems
    • 国際学会
  • [学会発表] Recognition of Heartbeat Categories Applying a Novel Preprocessing Scheme and Neural Networks2020

    • 著者名/発表者名
      Andres Hernandez-Matamoros, Hamido Fujita, Hector Perez-Meana
    • 学会等名
      The 19th International Conference on Intelligent Software Methodologies Tools and Techniques
    • 国際学会
  • [学会発表] Gaussian Representations of K-Means Clusters: Case Study of Educational Process Mining of UCI2020

    • 著者名/発表者名
      Yu-Chien Ko, Hamido Fujita
    • 学会等名
      The 19th International Conference on Intelligent Software Methodologies Tools and Techniques
    • 国際学会

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi