DNAシーケンシング技術やカメラ性能の向上により生物過程の時空間情報が急増している。これにより遺伝子間相互作用の時間的因果関係や、細胞・組織の3次 元的配置が生物の振る舞いへ与える効果などを厳密に調べることが可能になってきた。そこで本研究では、生命過程のより高度なモデリングを可能にするための 道具として、非線形確率偏微分方程式のパラメータをデータから推定する汎用的な機械学習技術の開発・実装を行うことを目標とした。計算機代数、自動微分、拡散モデルなど様々な方法を試したが一般的に使える道具となるためにはまだ多くの課題が残っており、今後も研究を継続していく必要がある。
|