• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実績報告書

咳の自動監視・計測・サービスシステムの構築

研究課題

研究課題/領域番号 20K12080
研究機関会津大学

研究代表者

MARKOV K  会津大学, コンピュータ理工学部, 教授 (80394998)

研究分担者 松井 知子  統計数理研究所, モデリング研究系, 教授 (10370090)
齋藤 純平  福島県立医科大学, 医学部, 講師 (50332929)
研究期間 (年度) 2020-04-01 – 2024-03-31
キーワードcough recognition / cough monitoring / DNN audio analysis
研究実績の概要

We have developed a novel deep learning system for efficient detection and monitoring of cough events in audio recordings. First, we perform voice activity detection to eliminate audio silences and focus on relevant segments. Next, we employ a cough classification technique to identify the presence of cough within those audio segments. Finally, we implement cough event detection using a high performance classification-regression fusion method. Our approach differs from the traditional audio event detection methods in several notable ways: (1) we incorporate a teacher-student framework for the training of our detection model, (2) instead of relying on specific audio features such as MFCC or Mel Spectrogram, our end-to-end system takes the raw audio signal directly as input and outputs the cough boundary timings, (3) the proposed method is general enough to be used for various other sound event monitoring tasks. The evaluation of our detection model in a 3-fold cross-validation experiment demonstrates its strong performance and robustness. Specifically, we achieved cough event detection F1, Recall, and Precision scores of 87.21%, 82.91%, and 92.36% respectively. The comparative cough monitoring assessment of our system against other platforms, including the Leicester Cough Monitor, demonstrates our system's superiority by achieving the lowest average hourly symmetric mean absolute error (sMAPE) of 8.48%.

  • 研究成果

    (1件)

すべて 2024

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件、 オープンアクセス 1件)

  • [雑誌論文] Neural Cough Counter: A Novel Deep Learning Approach for Cough Detection and Monitoring2024

    • 著者名/発表者名
      Z. Feng, K. Markov, J. Saito, T. Matsui
    • 雑誌名

      IEEE Access (Accepted for publication)

      巻: 0 ページ: 0-0

    • 査読あり / オープンアクセス / 国際共著

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi