研究課題/領域番号 |
20K14294
|
研究機関 | 愛知県立大学 |
研究代表者 |
田坂 浩二 愛知県立大学, 情報科学部, 准教授 (30780762)
|
研究期間 (年度) |
2020-04-01 – 2024-03-31
|
キーワード | 多重ゼータ値 / モジュラー形式 / 金子-Zagier予想 / Broadhurst-Kreimer予想 / 有限代数的数 |
研究実績の概要 |
Kaneko-Zagier予想に関連して昨年度取り掛かった代数的数の有限類似の理論研究を深め,Julian Rosen氏,竹山美宏氏(筑波大),山本修司氏(慶応大)との共同研究において,Q上のガロア拡大体における素数pの分解法則を線形漸化式を満たす数列のmod pでの値で特徴づけられることを示した.この結果は論文にまとめ,投稿中である. レベルNの多重ゼータ値の研究では,昨年度進めた基礎理論の研究を応用し,レベルNの2重Eisenstein級数のFourier展開とGoncharov余積との対応を明らかにし,そこから自然に生じる正規化2重Eisenstein級数で生成される空間の次元などの数値計算を行った.Broadhurst-Kreimer予想の高レベル化を見出す際に役に立つと思われる.得られた成果は第5回青葉山ゼータ研究集会などで発表した. また,Eisenstein級数の正規化反復Mellin積分値である多重モジュラー値を多重ゼータ値およびモジュラー形式のL関数の特殊値で表す明示公式の研究も進めた.数値実験の末,特殊な場合の2重モジュラー値について,広瀬稔氏(名大)とともに明示的な予想式を発見した.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
金子-Zagier予想を広げる研究では,Mordell-Tornheim型統合2重ゼータ関数の研究に一定の成果が得られた.また,有限代数的数の研究が,代数的整数論の研究に対する新たな方向性につながったことは大きな発見であった. レベル付き多重ゼータ値の研究はまだ投稿できるような段階ではないが,着々と理論構築が進んでおり,レベル付き独自の新たな現象も観察できつつある.今後さらなる発展が期待できよう. 2重モジュラー値の研究では,部分的に明示公式の予想を立てられたのは大きな進展であった.
|
今後の研究の推進方策 |
有限代数的数の理論の拡張の一つの方向性として,周期の有限類似を漸化式を満たす数列で捉える研究というのがありうる.超幾何が関わる合同式の研究などと関連が深いものとみており,長いスパンで研究される対象につながると確信している.まずはその口火を切るような研究に着手する. 2重モジュラー値およびレベル付き2重Eisenstein級数については,証明すべきことと証明の手法もおおよそ道筋がついているため,時間をみつけて取り組みたい.
|
次年度使用額が生じた理由 |
コロナ禍により,計画していた研究打合せや研究集会への参加が叶わなかったため,残額が生じた. 使用計画としては,国内については徐々に通常通りの出張ができるようになってきたので,研究打合せを加速させたい. また, 海外の研究者との研究交流や研究集会での講演を行う.
|