• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実施状況報告書

Deep Learning for Planetary Rover Localization

研究課題

研究課題/領域番号 20K14706
研究機関国立天文台

研究代表者

Wu Benjamin  国立天文台, アルマプロジェクト, 特別客員研究員 (50868718)

研究期間 (年度) 2020-04-01 – 2024-03-31
キーワードmachine learning / computer vision / deep learning / astronomy / interferometry / numerical simulation
研究実績の概要

We are exploring machine learning applications for space exploration and research and establishing deep learning computational hardware capabilities at NAOJ. We have installed new GPU server capabilities for the ALMA Project at NAOJ which can be used for accelerated machine learning.
We applied modern deep learning to two new directions: (1) astronomical interferometric imaging and (2) physics fluid simulations. This resulted in the publication of 2 papers at top machine learning conferences (NeurIPS, AAAI).
More specifically, we developed a new "neural interferometry" imaging method using neural implicit representations. We also incorporated signal processing techniques into physics-informed neural networks, greatly improving simulation accuracy and speed.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The GPU server upgrades have proceeded smoothly.

For rover localization, data generation was completed and initial convolutional neural networks were prototyped. However, we pivoted on the research topic due to new opportunities and collaborators, pursuing deep learning applications in fluid simulations (physics-informed neural networks) and also astronomical imaging (neural interferometry). This led to two new papers published at high-impact machine learning conferences. Due to this reprioritization, our original project on rover localization was delayed.

今後の研究の推進方策

I plan to continue testing different neural network architectures for the rover localization project on our finalized datasets. We may include newer techniques such as vision transformers, inspired from our recent publications.

If new opportunities arise to make impacts in adjacent fields such as physics simulations or astronomical imaging, we will also continue to expand upon those models.

  • 研究成果

    (6件)

すべて 2022 2021 その他

すべて 国際共同研究 (2件) 雑誌論文 (2件) (うち国際共著 2件、 査読あり 2件、 オープンアクセス 2件) 学会発表 (2件)

  • [国際共同研究] NVIDIA(米国)

    • 国名
      米国
    • 外国機関名
      NVIDIA
  • [国際共同研究] iSpace Europe/University of Luxembourg(ルクセンブルク)

    • 国名
      ルクセンブルク
    • 外国機関名
      iSpace Europe/University of Luxembourg
  • [雑誌論文] Neural Interferometry: Image Reconstruction from Astronomical Interferometers using Transformer Conditioned Neural Fields2022

    • 著者名/発表者名
      Benjamin Wu, Chao Liu, Benjamin Eckart, Jan Kautz
    • 雑誌名

      Association for the Advancement of Artificial Intelligence

      巻: 1 ページ: 10158

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Physics Informed RNN-DCT Networks for Time-Dependent Partial Differential Equations2021

    • 著者名/発表者名
      Benjamin Wu, Oliver Hennigh, Jan Kautz, Sanjay Chaudhry, Wonmin Byeon
    • 雑誌名

      NeurIPS: Machine Learning and the Physical Sciences

      巻: 1 ページ: 121

    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Neural Interferometry: Image Reconstruction from Astronomical Interferometers using Transformer Conditioned Neural Fields2022

    • 著者名/発表者名
      Benjamin Wu, Chao Liu, Benjamin Eckart
    • 学会等名
      AAAI-2022 (Association for the Advancement of Artificial Intelligence)
  • [学会発表] Physics Informed RNN-DCT Networks for Time-Dependent Partial Differential Equations2021

    • 著者名/発表者名
      Benjamin Wu
    • 学会等名
      NeurIPS 2021 (Neural Information Processing Systems) Machine Learning and the Physical Sciences

URL: 

公開日: 2022-12-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi