• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実施状況報告書

Mixed-Clairvoyance Task Offloading and Scheduling in Multi-access Edge Computing Systems: From Combinatorial Optimization to Machine Learning

研究課題

研究課題/領域番号 20K19794
研究機関大阪府立大学

研究代表者

江 易翰  大阪府立大学, 工学(系)研究科(研究院), 助教 (10824196)

研究期間 (年度) 2020-04-01 – 2023-03-31
キーワードTask offloading / Task scheduling / Deep learning / Internet of Things / Edge computing / Nonlinear programming
研究実績の概要

(1) We investigate the problem of cotask processing in multi-access edge computing (MEC) systems, which can be characterized as a nonlinear program (NLP) to minimize total cotask completion time (TCCT).
(2) Due to the lack of the probability distribution of link data rates, we apply transformation techniques to render the NLP a more tractable problem.
(3) We design a deep learning method to make cotask offloading and scheduling decisions based on random perturbation.
(4) Our simulation results show the convergence and the TCCT performance of the proposed solution under various system settings.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

In this fiscal year, what we have achieved can be summarized as follows.
(1) We formulated the problem of cotask processing in MEC systems as an NLP and show its NP-hardness.
(2) We applied a parameterization and a Lagrangian technique to transform the NLP to a parameterized and unconstrained version.
(3) We proposed the deep dual learning (DDL) method to update the primal and dual variables iteratively, where the learning parameters are governed by two deep neural networks (DNNs).
(4) We provided the duality gap and time complexity analyses to show the effectiveness of the DDL method.
(5) Our simulation results demonstrated that the DDL method can gradually converge over iterations and outperform other comparison schemes in terms of TCCT and the variance of CCT.

今後の研究の推進方策

In the next fiscal year, our goals can be enumerated as follows.
(1) We aim to address the problem of information sampling and transmission scheduling for serverless functions in the Internet of Things (IoT) systems with serverless computing to optimize the age of service (AoS) of serverless functions.
(2) We will leverage combinatorial optimization techniques to mathematically formulate the problem and investigate the problem intractability.
(3) We plan to design both offline and online age-efficient algorithms for the information sampling and transmission scheduling with and without the prior knowledge of the invocations of serverless functions, respectively.
(4) To evaluate the AoS performance, we will conduct simulations and testbed experiments to demonstrate that the proposed solution outperforms existing ones under various system parameters.

次年度使用額が生じた理由

In the next stage of this research, we plan to purchase a rack server equipped with higher computing powers for conducting large-scale simulations. Since the residual amount at the end of this fiscal year is insufficient for purchasing the equipment, we would like to use it in the next fiscal year alternatively.

  • 研究成果

    (8件)

すべて 2021 2020 その他

すべて 国際共同研究 (2件) 雑誌論文 (3件) (うち国際共著 3件、 査読あり 3件) 学会発表 (3件) (うち国際学会 3件)

  • [国際共同研究] Aalto University(フィンランド)

    • 国名
      フィンランド
    • 外国機関名
      Aalto University
  • [国際共同研究] National Taiwan University(その他の国・地域)

    • 国名
      その他の国・地域
    • 外国機関名
      National Taiwan University
  • [雑誌論文] Information Cofreshness-aware Grant Assignment and Transmission Scheduling for Internet of Things2021

    • 著者名/発表者名
      Chiang Yi-Han、Lin Hai、Ji Yusheng
    • 雑誌名

      IEEE Internet of Things Journal

      巻: - ページ: -

    • DOI

      10.1109/JIOT.2021.3052007

    • 査読あり / 国際共著
  • [雑誌論文] Deep-Dual-Learning-Based Cotask Processing in Multiaccess Edge Computing Systems2020

    • 著者名/発表者名
      Chiang Yi-Han、Chiang Tsung-Wei、Zhang Tianyu、Ji Yusheng
    • 雑誌名

      IEEE Internet of Things Journal

      巻: 7 ページ: 9383~9398

    • DOI

      10.1109/JIOT.2020.3004165

    • 査読あり / 国際共著
  • [雑誌論文] FlexSensing: A QoI and Latency Aware Task Allocation Scheme for Vehicle-based Visual Crowdsourcing via Deep Q-Network2020

    • 著者名/発表者名
      Zhu Chao、Chiang Yi-Han、Xiao Yu、Ji Yusheng
    • 雑誌名

      IEEE Internet of Things Journal

      巻: 8 ページ: 7625~7637

    • DOI

      10.1109/JIOT.2020.3040615

    • 査読あり / 国際共著
  • [学会発表] Timely Information Updates for the Internet of Things with Serverless Computing2021

    • 著者名/発表者名
      Wakisaka Sonori、Chiang Yi-Han、Lin Hai、Ji Yusheng
    • 学会等名
      IEEE International Conference on Communications (ICC)
    • 国際学会
  • [学会発表] Resource Allocation for Multi-access Edge Computing with Coordinated Multi-Point Reception2020

    • 著者名/発表者名
      Hung Jian-Jyun、Liao Wanjiun、Chiang Yi-Han
    • 学会等名
      IEEE Wireless Communications and Networking Conference (WCNC)
    • 国際学会
  • [学会発表] Freshness-aware Energy Saving in Cellular Systems with Cooperative Information Updates2020

    • 著者名/発表者名
      Chiang Yi-Han、Lin Hai、Ji Yusheng、Liao Wanjiun
    • 学会等名
      IEEE Global Communications Conference (GLOBECOM)
    • 国際学会

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi