• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実績報告書

Multilingual Knowledge Discovery in Digital Cultural Collections

研究課題

研究課題/領域番号 20K20135
研究機関立命館大学

研究代表者

SONG Yuting  立命館大学, 情報理工学部, 助教 (50849388)

研究期間 (年度) 2020-04-01 – 2022-03-31
キーワードEntity matching / MT Evaluation / Entity recognition / Relation extraction
研究実績の概要

This year we focused on improving the method of cross-lingual entity matching and collecting datasets for machine translation evaluation.
First, we proposed a novel method to identify records that refer to the same Japanese artwork entity in Japanese and English data sources. Our approach considered an entity as a sequence of attributes and employed a multilingual BERT-based network to enable cross-lingual entities to be compared without aligning the schema. In addition, we collected datasets and conducted further experiments to evaluate machine translations on translating ukiyo-e metadata records, especially the genre of bijin-e. In another work, we have investigated and evaluated the current state-of-the-art models to automatically discover entities and relations in short texts.

  • 研究成果

    (1件)

すべて 2021

すべて 学会発表 (1件) (うち国際学会 1件)

  • [学会発表] Joint Extraction of Clinical Entities and Relations Using Multi-head Selection Method2021

    • 著者名/発表者名
      FANG Xintao, SONG Yuting, MAEDA Akira
    • 学会等名
      2021 International Conference on Asian Language Processing
    • 国際学会

URL: 

公開日: 2022-12-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi