• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 研究成果報告書

機械学習の識別可能性の探求と消費者行動分析への応用

研究課題

  • PDF
研究課題/領域番号 20K22125
研究種目

研究活動スタート支援

配分区分基金
審査区分 0107:経済学、経営学およびその関連分野
研究機関石巻専修大学

研究代表者

佐藤 平国  石巻専修大学, 経営学部, 助教 (10878804)

研究期間 (年度) 2020-09-11 – 2022-03-31
キーワード識別性 / 潜在的ディリクレ配分法 / ニューラルネットワーク / 潜在変数モデル / マーケティング尺度 / 消費者心理 / 消費者行動
研究成果の概要

この研究の目的は、消費者行動分析を想定した機械学習モデルの利用において、同一のデータおよび手法を用いても、同一の推定結果が再現されない問題について精査し、パラメータ推定の安定性を改善することである。この研究の成果は、主に次の2つにまとめられる。(1)制約を取り入れたLDAを推定するマルコフ連鎖モンテカルロ・アルゴリズムを提案し、推定値の安定性が改善されることを示した。(2)制約付きのニューラルネットワーク(オートエンコーダ)の推定によって、得られる結果の安定性を示した。しかし、これらは限定的な仮定での結果であり、より一般的な状況を想定した拡張が今後の課題である。

自由記述の分野

マーケティング・リサーチ

研究成果の学術的意義や社会的意義

本研究の学術的な意義は、社会科学の領域で重視されている識別性の側面から機械学習の応用を議論した点であると考えられる。特にマーケティングや消費者行動分野において、消費者心理のような観測できない要因や不確かな要因を仮説的に測定したり、モデルで記述したりすることは重要な役割を果たしてきた。しかし、それらについて同一のデータと手法を用いても著しく異なる結果が得られる場合には、意思決定に多重の不確実性を与えることになる。このような文脈で本研究の社会的意義は、実社会で急速に利用が進んでいる機械学習について、社会科学での理論的背景も考慮しながらより頑健な応用方法を探索したことであると考えられる。

URL: 

公開日: 2023-01-30  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi