• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実施状況報告書

Hamilton-Jacobi equations on metric measure spaces

研究課題

研究課題/領域番号 20K22315
研究機関沖縄科学技術大学院大学

研究代表者

ZHOU Xiaodan  沖縄科学技術大学院大学, 距離空間上の解析ユニット, 准教授 (10871494)

研究期間 (年度) 2020-09-11 – 2023-03-31
キーワードHamilton-Jacobi equation / metric measure spaces / differential games / viscosity solutions / Heisenberg group
研究実績の概要

We provide a game-based interpretation of Hamilton-Jacobi-Isaacs equations in metric spaces. Our result develops the classical connection between differential games and the viscosity solutions to possibly nonconvex Hamilton-Jacobi equations.

We propose a notion of Monge solutions to eikonal equations in a metric space with a discontinuous inhomogeneous term. We obtained a comparison principle and existence and proved that it coincides with our previous definitions when the inhomogeneous term is continuous.

We studies a PDE-based approach to the horizontally quasiconvex envelope of a given continuous function in the Heisenberg group. One main result is to prove the uniqueness and existence of viscosity solutions to the Dirichlet boundary problems for the nonlocal Hamilton-Jacobi equation.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The completed paper mentioned in the summary of research achievement is related to the study of time-dependent Hamilton-Jacobi equations. This result extends the classical game-theoretic representation theorem for time-dependent Hamilton-Jacobi equations to metric spaces.

We also obtain well-posedness results on viscosity solutions to eikonal equations with discontinuous space variables in metric measure spaces. These results serve as an extension of the results for our first project when the inhomogeneous term is continuous and lay the foundation for the generalization in the next step.

今後の研究の推進方策

We will mainly focus on studying viscosity solutions to discontinuous HJ equations in metric measure spaces and list two explicit questions for the next step.

In Euclidean spaces, two main references on the viscosity solution theory for the HJ equation with measurable dependence on the state variables we plan to compare to are given by Camilli-Siconolfi (2003) and Briani-Davini (2005). We propose to explore an explicit relation between these definitions and ours. Furthermore, we propose to extend the viscosity solutions to general discontinuous HJ equations in metric measure spaces.

Another question we propose to investigate focuses on the eikonal equation. We propose to relax the condition that the inhomogeneous term being essentially bounded to a weaker integrability condition.

次年度使用額が生じた理由

Due to the global pandemic, all research visits and onsite conference travel plans have been cancelled or delayed. I will use the remaining amount in research travel and hosting a conference at OIST.

  • 研究成果

    (4件)

すべて 2022 2021

すべて 雑誌論文 (1件) 学会発表 (3件) (うち国際学会 1件、 招待講演 2件)

  • [雑誌論文] Differential games and Hamilton-Jacobi-Isaacs equations in metric spaces2022

    • 著者名/発表者名
      Qing Liu and Xiaodan Zhou
    • 雑誌名

      Minimax Theory and its Applications

      巻: in press ページ: -

  • [学会発表] Horizontal quasiconvex envelope in the Heisenberg group2021

    • 著者名/発表者名
      Xiaodan Zhou
    • 学会等名
      Himeji conference of Partial Differential Equation
    • 国際学会
  • [学会発表] Horizontally quasiconvex envelope in the Heisenberg group2021

    • 著者名/発表者名
      Xiaodan Zhou
    • 学会等名
      Geometric and functional inequalities and applications seminar
    • 招待講演
  • [学会発表] Horizontally quasiconvex envelope in the Heisenberg group2021

    • 著者名/発表者名
      Xiaodan Zhou
    • 学会等名
      PDE seminar of HKST
    • 招待講演

URL: 

公開日: 2022-12-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi