• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

Hamilton-Jacobi equations on metric measure spaces

研究課題

研究課題/領域番号 20K22315
研究機関沖縄科学技術大学院大学

研究代表者

ZHOU Xiaodan  沖縄科学技術大学院大学, 距離空間上の解析ユニット, 准教授 (10871494)

研究期間 (年度) 2020-09-11 – 2024-03-31
キーワードeikonal equation / metric measure space / viscosity solution / Heisenberg group / h-quasiconvexity / Hamilton-Jacobi equation
研究実績の概要

The first project studies the eikonal equation in metric measure spaces, where the inhomogeneous term is allowed to be discontinuous, unbounded and merely p-integrable in the domain. Generalizing the notion of Monge solutions in metric space, we establish uniqueness and existence results for the associated Dirichlet boundary problem.
The second project is concerned with a PDE-based approach to the horizontally quasiconvex envelope of a given continuous function in the Heisenberg group. We obtain the uniqueness and existence of viscosity solutions to the Dirichlet boundary problem for the nonlocal Hamilton-Jacobi equation.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The first project extends our previous results of eikonal equations on metric measure spaces with continuous inhomogeneous term. The main results are all completed and the paper is under final revision for submission.
The second project studies Hamilton-Jacobi equations on the Heisenberg group and its application to horizontally quasiconvex function. The paper has been accepted for publication at Rev. Mat. Iberoam.

今後の研究の推進方策

We will continue the study of viscosity solutions to Hamilton-Jacobi equations in general metric measure spaces and Heisenberg group in the following two aspects.

1. Study the solution to eikonal equation with more general inhomogeneous term and on more general conditions for the metric space. Extend the method and results to other classes of Hamilton-Jacobi equations.

2. Study second-order characterization of horizontally quasiconvex functions in the Heisenberg group and its application to properties including convexity preserving of horizontal mean curvature flow equations.

次年度使用額が生じた理由

Due to the global pandemic, research visits and onsite conference travel plans have been postponed. I will use the remaining amount in research travel and hosting visitors at OIST.

  • 研究成果

    (6件)

すべて 2023 2022 その他

すべて 国際共同研究 (1件) 雑誌論文 (1件) 学会発表 (4件) (うち国際学会 3件、 招待講演 1件)

  • [国際共同研究] University of Cincinnati(米国)

    • 国名
      米国
    • 外国機関名
      University of Cincinnati
  • [雑誌論文] Horizontally quasiconvex envelope in the Heisenberg group2023

    • 著者名/発表者名
      Kijowski Antoni、Liu Qing、Zhou Xiaodan
    • 雑誌名

      Revista Matematica Iberoamericana

      巻: in press ページ: -

    • DOI

      10.4171/RMI/1417

  • [学会発表] Discontinuous eikonal equations in metric measure spaces2022

    • 著者名/発表者名
      Xiaodan Zhou
    • 学会等名
      MATRIX-RIMS Tandem Workshop on Geometric Analysis in Harmonic Analysis and PDE
    • 国際学会
  • [学会発表] Eikonal equations on metric measure spaces2022

    • 著者名/発表者名
      Xiaodan Zhou
    • 学会等名
      RIMS Women in Mathematics
    • 国際学会
  • [学会発表] Horizontally quasiconvex envelope in the Heisenberg group2022

    • 著者名/発表者名
      Xiaodan Zhou
    • 学会等名
      The 47th Sapporo Symposium on Partial Differential Equations
    • 国際学会
  • [学会発表] Characterization of horizontal quasiconvexity in the Heisenberg group and applications2022

    • 著者名/発表者名
      Xiaodan Zhou
    • 学会等名
      PDE and Analysis Seminar, University of Pittsburgh
    • 招待講演

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi