• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

マッチング問題の代数的拡張に対する組合せ的アプローチ

研究課題

研究課題/領域番号 20K23323
研究機関京都大学

研究代表者

岩政 勇仁  京都大学, 情報学研究科, 助教 (70854602)

研究期間 (年度) 2020-09-11 – 2024-03-31
キーワードEdmonds問題 / 重み付きEdmonds問題 / 非可換Edmonds問題 / 重み付き非可換Edmonds問題 / 線形マトロイド交叉
研究実績の概要

2×2型分割多項式行列の小行列式最大次数列を求める組合せ的強多項式時間アルゴリズムを提案した論文"A combinatorial algorithm for computing the degree of the determinant of a generic partitioned polynomial matrix with 2×2 submatrices"が,Mathematical Programming, Series Aに採択された.また,この成果をThe 12th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications (JH 2023)で発表し,多数の有用なフィードバックを得た.
また,Edmonds問題の特殊クラスである線形マトロイド交叉に対して,「遷移可能性」という観点から研究を行った.それにより,有向木(グラフ的マトロイドと分割マトロイドの交叉)の遷移可能性判定問題が多項式時間で解けることが判明した.この成果をまとめた論文"Reconfiguring (non-spanning) arborescences"が論文誌Theoretical Computer Scienceに採択された.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

これまでの成果が順調に論文誌に採択されており,それらを進展させた研究も進められているため,順調であると言える.

今後の研究の推進方策

重み付き(非可換)Edmonds問題に取り組む.特に行列の形を限定しない一般的な設定に対するアルゴリズムの構築を目指す.

次年度使用額が生じた理由

海外出張時の宿泊費を先方が負担してくれたため.
本研究課題に関する研究により招待された来年度開催される国際学会発表時の渡航費に用いる.

  • 研究成果

    (5件)

すべて 2023 その他

すべて 雑誌論文 (3件) (うち査読あり 3件) 学会発表 (1件) (うち国際学会 1件) 備考 (1件)

  • [雑誌論文] Reconfiguring (non-spanning) arborescences2023

    • 著者名/発表者名
      Takehiro Ito, Yuni Iwamasa, Yasuaki Kobayashi, Yu Nakahata, Yota Otachi, and Kunihiro Wasa
    • 雑誌名

      Theoretical Computer Science

      巻: 943 ページ: 131~141

    • DOI

      10.1016/j.tcs.2022.12.007

    • 査読あり
  • [雑誌論文] Monotone Edge Flips to an Orientation of Maximum Edge-Connectivity a la Nash-Williams2023

    • 著者名/発表者名
      Takehiro Ito, Yuni Iwamasa, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, Shun-ichi Maezawa, Yuta Nozaki, Yoshio Okamoto, and Kenta Ozeki
    • 雑誌名

      ACM Transactions on Algorithms

      巻: 19 ページ: 1~22

    • DOI

      10.1145/3561302

    • 査読あり
  • [雑誌論文] A combinatorial algorithm for computing the entire sequence of the maximum degree of minors of a generic partitioned polynomial matrix with 2×2 submatrices2023

    • 著者名/発表者名
      Yuni Iwamasa
    • 雑誌名

      Mathematical Programming, Series A

      巻: - ページ: -

    • 査読あり
  • [学会発表] A combinatorial algorithm for computing the entire sequence of the maximum degree of minors of a generic partitioned polynomial matrix with 2×2 submatrices2023

    • 著者名/発表者名
      Yuni Iwamasa
    • 学会等名
      The 12th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications (JH 2023)
    • 国際学会
  • [備考] 研究成果

    • URL

      http://www.lab2.kuis.kyoto-u.ac.jp/iwamasa/ja/research.html

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi