• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2009 年度 実績報告書

直交関数展開における調和解析の研究

研究課題

研究課題/領域番号 21540170
研究機関金沢大学

研究代表者

勘甚 裕一  金沢大学, 機械工学系, 教授 (50091674)

研究分担者 佐藤 秀一  金沢大学, 学校教育系, 准教授 (20162430)
キーワードハンケル変換 / ペーリーの不等式 / ハーディの不等式 / エルミート展開 / ラゲール展開 / 実ハーディ空間
研究概要

平成21年度における研究実績は,積分変換に関するペーリーの不等式を得たことである.古典的なペーリーの不等式とは,実ハーディ空間に属する関数のフーリエ級数展開を考えたとき,第n番目のフーリエ係数の絶対値の2乗をアダマール間隙を持つnに渡って総和したものは収束し,その和は元の関数の実ハーディ空間のノルムの2乗で押さえられるというものである.このような不等式が連続変換に対しては,どのような形で成り立つのかと言うのが研究の動機であった.これに対して,有用な積分変換であるハンケル変換(特殊な場合としてフーリエ変換を含む)に対して,この古典的なバーリーの不等式が類似の形で成り立つことを示した.この成果はHokkaido Math.J.に発表された.
もう一つの研究成果は,エルミート展開とラゲール展開に関するハーディの不等式の研究である.これは,古典的なハーディの不等式を,エルミート展開とラゲール展開に対して,以前考察したものの再研究である.古典的なハーディの不等式とは,実ハーディ空間に属する関数のフーリエ級数展開を考えたとき,第n番目のフーリエ係数の絶対値を|n|+1で除したものを,すべてのnに渡って総和したものが収束し,その和は元の関数の実ハーディ空間のノルムで押さえられるというものである.古典的な場合は,実ハーディ空間より広い可積分関数の空間では成り立たない.ところが,今回の再研究によって,エルミート展開とラゲール展開に対しては,可積分関数の空間に関して成り立つという注目すべき結果が得られた.この成果はJ.Math.Soc.Japanにおいて掲載が決定している.

  • 研究成果

    (5件)

すべて 2010 2009 その他

すべて 雑誌論文 (3件) (うち査読あり 3件) 学会発表 (1件) 備考 (1件)

  • [雑誌論文] Hardy's inequalities for Hermite and Laguerre expansions revisited2010

    • 著者名/発表者名
      Yuichi Kanjin
    • 雑誌名

      J.Math.Soc.Japan (in press)

    • 査読あり
  • [雑誌論文] Weak type (1, 1) estimates for parabolic singular integrals2010

    • 著者名/発表者名
      Shuichi Sato
    • 雑誌名

      Proc.Edinb.Math.Soc. (in press)

    • 査読あり
  • [雑誌論文] Paley's inequality of integral transform type2009

    • 著者名/発表者名
      Yuichi Kanjin, Kunio Sato
    • 雑誌名

      Hokkaido Math.J. 38

      ページ: 233-247

    • 査読あり
  • [学会発表] Transplantation theorems for orthogonal expansions2009

    • 著者名/発表者名
      Yuichi Kanjin
    • 学会等名
      Harmonic Analysis and its applications at Pohang 2009
    • 発表場所
      浦項工科大学 (韓国)
    • 年月日
      2009-11-26
  • [備考]

    • URL

      http://www.ms.t.kanazawa-u.ac.jp/~maths/kanjin/kanjpaper.htm

URL: 

公開日: 2011-06-16   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi