研究課題
画像処理や結晶成長現象を記述するうえで重要な全変動流方程式はしばしば2階ではなく4階であることが多い。拡散型偏微分方程式は2階の場合は非常によく研究されているが、4階の場合は、2階の手法のうち、例えば最大値原理が使えないなど研究手法が限られている。これについて、さまざまな設定で初期値問題の可解性や、解の挙動に取り組んだ。また、2階の問題については、境界での動的境界条件を特異極限として導出するという問題にも取り組んだ。外国人研究員は、すべての段階で適切な解決法を提案した。
令和3年度が最終年度であるため、記入しない。
すべて 2022 2021
すべて 雑誌論文 (1件) (うち査読あり 1件) 学会発表 (3件) (うち国際学会 3件、 招待講演 3件)
Indiana University Mathematics Journal
巻: 70 ページ: 2427~2450
10.1512/iumj.2021.70.9479