• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実績報告書

エネルギー界面特性の分子論的解明

研究課題

研究課題/領域番号 21F30701
研究機関信州大学

研究代表者

古山 通久  信州大学, 先鋭領域融合研究群先鋭材料研究所, 教授(特定雇用) (60372306)

研究分担者 VALADEZ HUERTA GERARDO  信州大学, 先鋭領域融合研究群先鋭材料研究所, 外国人特別研究員
研究期間 (年度) 2021-07-28 – 2023-03-31
キーワードNeural Network Potential / Heterogeneous Catalysis / Interface / Molecular Simulation / Catalyst / Supported Nanoparticles / Dissociation
研究実績の概要

The study aims to analyze interfaces with reactive molecular simulations. We decided to adopt a universal neural network potential for this study. This model is capable of describing chemical reactions and predicting partial charges, and it considers up to 55 chemical elements. The model’s capability to describe interfacial systems was thoroughly tested during the project. The tests were conducted for alloy nanoparticles, molecular adsorption on monometallic nanoparticles, and metal-oxides. We targeted the adsorption and catalytic properties of N2 on a Ru nanoparticle supported on a La0.5Ce0.5O1.75-x reduced slab. This heterogeneous system shows a strong-metal support interaction (SMSI). Such complex systems cannot be assessed with conventional methods, usually applied for heterogeneous catalysis. An automation procedure was implemented, which allows characterizing the adsorption behavior of diatomic molecules on all nanoparticle on-top sites for different configurations with various support reduction and SMSI degrees. We considered 200 catalysts resulting in 15600 calculated adsorption sites. The activation barrier for the dissociation of N2 in such a complex heterogeneous system was approached. The calculations and results are unique in their type.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Applying the universal neural network potential makes the parameterization of the conventional reactive force field like ReaxFF unnecessary. However, this new method was not applied to complex interfacial system so far. Therefore, a rigorous check must be conducted before beginning the massive use in the project. Nevertheless, rapid computation realized by the universal neural network potential saves the total research resource much, resulting in the advances and achievements more than expected. Thus, we believe that the progress is generally favorable.

今後の研究の推進方策

In the first phase of the project, we could show the capability of using a universal neural network potential to describe heterogeneous systems. However, we could also identify the limits of the model. Nevertheless, the next step is to analyze further supported nanoparticle systems with the developed automation tools to create a database for heterogeneous catalysis. We also seek to conduct a first calculation, e.g., for the complete ammonia synthesis reaction path on a supported nanoparticle with the strong metal support interaction to assess the activation barriers for each reaction step on different catalyst sites.

  • 研究成果

    (4件)

すべて 2022 2021

すべて 雑誌論文 (2件) (うち査読あり 1件、 オープンアクセス 2件) 学会発表 (2件)

  • [雑誌論文] First-Principles Calculations of Stability, Electronic Structure, and Sorption Properties of Nanoparticle Systems2021

    • 著者名/発表者名
      Gerardo Valadez Huerta, Yusuke Nanba, Nor Diana Binti Zulkifli, David Samuel Rivera Rocabado, Takayoshi Ishimoto, Michihisa Koyama
    • 雑誌名

      Journal of Computer Chemistry, Japan

      巻: 20 ページ: 23-47

    • DOI

      10.2477/jccj.2021-0028

    • 査読あり / オープンアクセス
  • [雑誌論文] Calculations of Real-System Nanoparticles Using Universal Neural Network Potential PFP2021

    • 著者名/発表者名
      Gerardo Valadez Huerta, Yusuke Nanba, Iori Kurata, Kosuke Nakago, So Takamoto, Chikashi Shinagawa, Michihisa Koyama
    • 雑誌名

      arXiv

      巻: NA ページ: 2107.00963

    • DOI

      10.48550/arXiv.2107.00963

    • オープンアクセス
  • [学会発表] Computer Automated Material Design by Universal Neural Network Potential2022

    • 著者名/発表者名
      Gerardo Valadez Huerta, Ayako Tamura, Yusuke Nanba, Kaoru Hisama, Michihisa Koyama
    • 学会等名
      The Society of Chemical Engineers, Japan, 87th Annual Meeting
  • [学会発表] Theoretical Investigation of N2 Adsorption on Supported Ru Nanoparticles on Partially Reduced La0.5Ce0.5O1.75 by Neural Network Potential Calculations2021

    • 著者名/発表者名
      erardo Valadez Huerta, Katsutoshi Sato, Katsutoshi Nagaoka, Michihisa Koyama
    • 学会等名
      31st Annual Meeting of the Materials Research Society of Japan

URL: 

公開日: 2022-12-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi