• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 研究成果報告書

人工知能により病理画像と多層オミックスデータを統合した新しい病理診断の創出

研究課題

  • PDF
研究課題/領域番号 21H02705
研究種目

基盤研究(B)

配分区分補助金
応募区分一般
審査区分 小区分49020:人体病理学関連
研究機関慶應義塾大学

研究代表者

金井 弥栄  慶應義塾大学, 医学部(信濃町), 教授 (00260315)

研究分担者 榊原 康文  慶應義塾大学, 理工学部(矢上), 教授 (10287427)
新井 恵吏  慶應義塾大学, 医学部(信濃町), 准教授 (40446547)
研究期間 (年度) 2021-04-01 – 2024-03-31
キーワード病理診断 / 人工知能 / オミックス解析 / 病理画像
研究成果の概要

本研究は、人工知能 (AI)の支援を受け、病理形態像とオミックス情報を融合させ、がんの治療奏効性や予後を予測する深層学習モデルを構築することを目的とした。腎細胞がん手術検体の顕微鏡写真・バーチャルスライドデータを用い、予後不良なCpGアイランドメチル化形質 (CIMP) 陽性腎細胞がんの、畳み込みニューラールネットワークモデルを構築した。さらに、gradient-weighted class activation mappingを用いて、CIMP陽性・陰性の判別時に病理画像のどの領域に着目しているか可視化した。現在、多層オミックス情報を追加して取得し、モデルの予後予測力の向上を図っている。

自由記述の分野

人体病理学

研究成果の学術的意義や社会的意義

病理診断は従来から、がん等の臨床症例の最終診断を担ってきたが、がんゲノム医療が社会実装された今日にあっては、従来通り形態像のみに基づく組織型分類にとどまるべきではない。病理診断学は、オミックス情報を取り込んで、ブレイクスルーを果たすべきである。可視化したCIMP判定時のAIの着眼点を形態学的診断基準に翻訳することにより、病理医が顕微鏡で見るだけでモデルと同等の治療奏効性予測・予後予測を実施できれば、「病理医とAIの創造的協働による、オミックス情報を統合した新しい病理診断の創出」の端緒となると期待される。

URL: 

公開日: 2025-01-30  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi