報告者はこれまでに、縮環構造内に硫黄原子を導入した二核ロジウムカルボキシラート錯体を合成し、分子内C-H挿入反応を高い立体選択性で触媒することを見出した。本錯体は、カルボキシラート部位、及びアミド部位の硫黄-酸素原子間に複数のカルコゲン結合(カルコゲン:第16族元素)を形成しており、この“カルコゲン結合を介した配座制御”が優れた不斉誘起の主要因であると示唆された。そこで本研究では、硫黄原子を酸素やセレン原子に変換した錯体を合成し、その不斉誘起能を評価することで、“カルコゲン結合を介した配座制御”が立体選択性に与える影響を精査した。 まず、錯体を合成する上で必要となる酸素やセレン原子を有するジカルボン酸をそれぞれ光学活性体として合成し、X線結晶構造解析を行った。その結果、セレン原子を有するジカルボン酸では、期待通り酸素-セレン原子間に働くカルコゲン結合がカルボキシ基の配座制御に寄与していることが確認された。一方で、一般的にカルコゲン結合を形成しない酸素原子を有するジカルボン酸についても、予想に反しカルボキシ基が配座制御されることが明らかになったため、NBO解析によってその要因を考察した。酸素原子間のカルコゲン結合は予想通り確認されなかったが、カルボニル酸素と炭素原子の間にテトレル結合(テトレル元素:第14族元素)が確認され、これがカルボキシ基が配座制御された要因であることがわかった。 次いで、合成したジカルボン酸を錯体に誘導し、分子内C-H挿入反応を検討したところ、酸素原子を有する錯体では立体選択性が低下し、セレン原子を有する錯体では高い立体選択性が維持されることがわかった。このように、カルコゲン結合を形成しない酸素原子を導入したことで立体選択性が低下したため、硫黄原子を有する錯体の優れた不斉誘起の主要因が“カルコゲン結合を介した配座制御”であることが実験的に裏付けられた。
|