• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

New Developments in Regression Discontinuity Designs: Covariates Adjustment and Coverage Optimal Inference

研究課題

研究課題/領域番号 21K01419
研究機関筑波大学

研究代表者

YU ZHENGFEI  筑波大学, 人文社会系, 准教授 (40774758)

研究期間 (年度) 2021-04-01 – 2025-03-31
キーワードRegression discontinuity / Covariate adjustment / Balancing estimator / Efficiency / Empirical likelihood
研究実績の概要

This year's research proposes a balancing approach for covariate-adjusted estimation of the treatment effect parameter in the Regression discontinuity (RD) model.The new empirical entropy balancing method reweights the standard local polynomial RD estimator by using the entropy balancing weights that minimize the Kullback-Leibler divergence from the uniform weights while satisfying the covariate balance constraints. The entropy balancing estimator can be formulated as an empirical likelihood estimator that efficiently incorporates the information from the covariate balance condition as over-identifying moment restrictions, and thus has an asymptotic variance no larger than that of the standard estimator without covariates. Further efficiency improvement is also possible by balancing functions of covariates over a linear sieve space. The proposed method enjoys favorable second-order properties from empirical likelihood estimation and inference: the estimator has a small (bounded) nonlinearity bias, and the likelihood ratio based confidence set admits a simple analytical correction that can be used to improve coverage accuracy.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Following the advice of journal editors and referees, this year's research improves the initially proposed covariate adjustment method for RD in several aspects: first, I propose an entropy balancing estimator for RD which resembles the entropy
balancing method in the literature on average treatment effect(ATE) estimation under unconfoundedness. Second, the proposed estimation procedure no longer involves nuisance parameters. Third, further efficiency gain is possible if the covariate balance conditions are imposed on functions of the covariates.

今後の研究の推進方策

This project is going to extend the empirical balancing method for covariate adjustment beyond the standard regression discontinuity (RD) model. Specifically, it also applies to covariate-adjusted estimation of the treatment effect derivative and nonlinear RD estimators for limited dependent variables. In general, one can start with the standard estimator (without covariates) for a parameter of interest in an RD-related context and then replace its standard uniform weights with the balancing weights. The balancing weights are computed using the covariates only, and are independent of the standard estimator. The balancing approach proposed in the project can also be cast in a more general framework: the risk minimization problem that trades off between imbalance and complexity.

  • 研究成果

    (5件)

すべて 2023 その他

すべて 国際共同研究 (2件) 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件) 学会発表 (2件) (うち国際学会 2件)

  • [国際共同研究] Renmin University of China/Chinese University of Hong Kong(中国)

    • 国名
      中国
    • 外国機関名
      Renmin University of China/Chinese University of Hong Kong
  • [国際共同研究] University of British Columbia(カナダ)

    • 国名
      カナダ
    • 外国機関名
      University of British Columbia
  • [雑誌論文] Inference on individual treatment effects in nonseparable triangular models2023

    • 著者名/発表者名
      Ma Jun、Marmer Vadim、Yu Zhengfei
    • 雑誌名

      Journal of Econometrics

      巻: 235 ページ: 2096~2124

    • DOI

      10.1016/j.jeconom.2023.02.011

    • 査読あり / 国際共著
  • [学会発表] Double Robust Bayesian Inference on Average Treatment Effects2023

    • 著者名/発表者名
      Yu Zhengfei
    • 学会等名
      2023 Asian Meeting of the Econometric Society
    • 国際学会
  • [学会発表] Double Robust Bayesian Inference on Average Treatment Effects2023

    • 著者名/発表者名
      Yu Zhengfei
    • 学会等名
      Econometric Society 2023 Australasia Meeting
    • 国際学会

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi